scholarly journals Tau deposition is associated with functional isolation of the hippocampus in aging

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Theresa M. Harrison ◽  
Anne Maass ◽  
Jenna N. Adams ◽  
Richard Du ◽  
Suzanne L. Baker ◽  
...  

Abstract The tau protein aggregates in aging and Alzheimer disease and may lead to memory loss through disruption of medial temporal lobe (MTL)-dependent memory systems. Here, we investigated tau-mediated mechanisms of hippocampal dysfunction that underlie the expression of episodic memory decline using fMRI measures of hippocampal local coherence (regional homogeneity; ReHo), distant functional connectivity and tau-PET. We show that age and tau pathology are related to higher hippocampal ReHo. Functional disconnection between the hippocampus and other components of the MTL memory system, particularly an anterior-temporal network specialized for object memory, is also associated with higher hippocampal ReHo and greater tau burden in anterior-temporal regions. These associations are not observed in the posteromedial network, specialized for context/spatial information. Higher hippocampal ReHo predicts worse memory performance. These findings suggest that tau pathology plays a role in disconnecting the hippocampus from specific MTL memory systems leading to increased local coherence and memory decline.

Brain ◽  
2021 ◽  
Author(s):  
David Berron ◽  
Jacob W Vogel ◽  
Philip S Insel ◽  
Joana B Pereira ◽  
Long Xie ◽  
...  

Abstract In Alzheimer’s disease, postmortem studies have shown that the first cortical site where neurofibrillary tangles appear is the transentorhinal region, a subregion within the medial temporal lobe that largely overlaps with area 35, and the entorhinal cortex. Here we used tau-PET imaging to investigate the sequence of tau pathology progression within the human medial temporal lobe and across regions in the posterior-medial system. Our objective was to study how medial temporal tau is related to functional connectivity, regional atrophy, and memory performance. We included 215 β-amyloid negative cognitively unimpaired, 81 β-amyloid positive cognitively unimpaired and 87 β-amyloid positive individuals with mild cognitive impairment, who each underwent [18]F-RO948 tau and [18]F-flutemetamol amyloid PET imaging, structural T1-MRI and memory assessments as part of the Swedish BioFINDER-2 study. First, event-based modelling revealed that the entorhinal cortex and area 35 show the earliest signs of tau accumulation followed by the anterior and posterior hippocampus, area 36 and the parahippocampal cortex. In later stages, tau accumulation became abnormal in neocortical temporal and finally parietal brain regions. Second, in cognitively unimpaired individuals, increased tau load was related to local atrophy in the entorhinal cortex, area 35 and the anterior hippocampus and tau load in several anterior medial temporal lobe subregions was associated with distant atrophy of the posterior hippocampus. Tau load, but not atrophy, in these regions was associated with lower memory performance. Further, tau-related reductions in functional connectivity in critical networks between the medial temporal lobe and regions in the posterior-medial system were associated with this early memory impairment. Finally, in patients with mild cognitive impairment, the association of tau load in the hippocampus with memory performance was partially mediated by posterior hippocampal atrophy. In summary, our findings highlight the progression of tau pathology across medial temporal lobe subregions and its disease-stage specific association with memory performance. While tau pathology might affect memory performance in cognitively unimpaired individuals via reduced functional connectivity in critical medial temporal lobe-cortical networks, memory impairment in mild cognitively impaired patients is associated with posterior hippocampal atrophy.


2002 ◽  
Vol 32 (2) ◽  
pp. 251-258 ◽  
Author(s):  
G. M. MacQUEEN ◽  
T. M. GALWAY ◽  
J. HAY ◽  
L. T. YOUNG ◽  
R. T. JOFFE

Background. Neuropsychological studies have suggested that memory systems reliant on medial temporal lobe structures are impaired in patients with depression. There is less data regarding whether this impairment is specific to recollection memory systems, and whether clinical features predict impairment. This study sought to address these issues.Method. A computerized process-dissociation memory task was utilized to dissociate recollection and habit memory in 40 patients with past or current major depression and 40 age, sex and IQ matched non-psychiatric control subjects. The Cognitive Failures Questionnaire was used to assess patients’ perceptions of day-to-day memory failures.Results. Patients had impaired recollection memory (t = 4·7, P<0·001), but no impairment in habit memory when compared to controls. Recollection memory performance was not predicted by indices of current mood state, but was predicted by self-assessments of impairment (β = −0·33; P = 0·008) and past number of depressions (β = −0·41; P = 0·001). There was no evidence that standard therapy with antidepressant medication either improved or worsened memory performance.Conclusions. The results confirm that patients with multiple past depressions have reduced function on recollection memory tasks, but not on habit memory performance. The memory deficits were independent of current mood state but related to past course of illness and significant enough that patients detected impairment in day-to-day memory function.


2021 ◽  
Vol 11 (10) ◽  
pp. 1283
Author(s):  
Connor J. Phipps ◽  
Daniel L. Murman ◽  
David E. Warren

Human memory systems are imperfect recording devices that are affected by age and disease, but recent findings suggest that the performance of these systems may be modifiable through interventions using non-invasive brain stimulation such as repetitive transcranial magnetic stimulation (rTMS). The translational potential of these rTMS interventions is clear: memory problems are the most common cognitive complaint associated with healthy aging, while pathological conditions such as Alzheimer’s disease are often associated with severe deficits in memory. Therapies to improve memory or treat memory loss could enhance independence while reducing costs for public health systems. Despite this promise, several important factors limit the generalizability and translational potential of rTMS interventions for memory. Heterogeneity of protocol design, rTMS parameters, and outcome measures present significant challenges to interpretation and reproducibility. However, recent advances in cognitive neuroscience, including rTMS approaches in addition to a new understanding of functional brain networks and related insights, may offer methodological tools necessary to design new interventional studies with enhanced experimental rigor, improved reproducibility, and greater likelihood of successful translation to clinical settings. In this review, we first discuss the current state of the literature on memory modulation with rTMS, then offer a commentary on developments in cognitive neuroscience that are relevant to rTMS interventions, and finally close by offering several recommendations for the design of future investigations using rTMS to modulate human memory performance.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
A. C. Burggren ◽  
B. Renner ◽  
M. Jones ◽  
M. Donix ◽  
N. A. Suthana ◽  
...  

Identifying subjects with mild cognitive impairment (MCI) most likely to decline in cognition over time is a major focus in Alzheimer's disease (AD) research. Neuroimaging biomarkers that predict decline would have great potential for increasing the efficacy of early intervention. In this study, we used high-resolution MRI, combined with a cortical unfolding technique to increase visibility of the convoluted medial temporal lobe (MTL), to assess whether gray matter thickness in subjects with MCI correlated to decline in cognition over two years. We found that thickness in the entorhinal (ERC) and subicular (Sub) cortices of MCI subjects at initial assessment correlated to change in memory encoding over two years (ERC:r=0.34;P=.003) and Sub (r=0.26;P=.011) but not delayed recall performance. Our findings suggest that aspects of memory performance may be differentially affected in the early stages of AD. Given the MTL's involvement in early stages of neurodegeneration in AD, clarifying the relationship of these brain regions and the link to resultant cognitive decline is critical in understanding disease progression.


2019 ◽  
Author(s):  
Shauna M. Stark ◽  
Amy Frithsen ◽  
Craig E.L. Stark

AbstractAging causes hippocampal circuit alterations that differentially affect hippocampal subfields and are associated with age-related memory decline. Additionally, functional organization along the longitudinal axis of the hippocampus has revealed distinctions between anterior and posterior (A-P) connectivity. Here, we examined the functional connectivity (FC) differences between young and older adults at high-resolution within the medial temporal lobe network (entorhinal, perirhinal, and parahippocampal cortices), allowing us to explore how hippocampal subfield connectivity across the longitudinal axis of the hippocampus changes with age. Overall, we found reliably greater connectivity for younger adults than older adults between the hippocampus and PHC and PRC. This drop in functional connectivity was more pronounced in the anterior regions of the hippocampus than the posterior ones, consistent for each of the hippocampal subfields. Further, intra-hippocampal connectivity also reflected an age-related decrease in functional connectivity within the anterior hippocampus in older adults that was offset by an increase in posterior hippocampal functional connectivity. Interestingly, the anterior-posterior shift in older adults between hippocampus and PHC was predictive of lure discrimination performance on the MST, suggesting that this shift may reflect a compensation mechanism that preserves memory performance. While age-related dysfunction within the hippocampal subfields has been well-documented, these results suggest that the age-related A-P shift in hippocampal connectivity may also contribute significantly to memory decline in older adults.


2020 ◽  
Author(s):  
Francesca Farina ◽  
Marc Patrick Bennett ◽  
James William Griffith ◽  
Bert Lenaert

Evidence concerning the impact of fear of memory decline on health-related outcomes is limited. To determine the relationship between fear-avoidance of memory decline, quality of life and subjective memory in older adults using a novel scale to measure fear of memory decline. Sixty-seven older adults (59-81 years) completed a 23-item self-report questionnaire designed to capture experiential, cognitive and behavioral components of fear of memory decline, known as the fear and avoidance of memory decline (FAM) scale. Memory performance was assessed using the Wechsler Memory Scale (WMS-IV) and the Memory Failures Scale (MFS). General anxiety was assessed using the Depression, Anxiety and Stress Scales (DASS) and the Geriatric Anxiety Inventory (GAI). Quality of life was assessed using the Older Person’s Quality of Life scale (OPQOL-35). The FAM scale demonstrated good reliability and validity. Three latent factors were observed including: (1) fear-avoidance, (2) problematic beliefs and (3) resilience. After adjusting for age, education, memory performance and general anxiety, higher fear-avoidance predicted lower quality of life (p=.021) and increased memory failures (p=.022). Increased fear of memory decline predicts lower quality of life and subjective memory failures in healthy older adults. Based on these findings, we propose a preliminary fear-avoidance model that explains the development and maintenance of dementia-related functional disability in terms of psychological processes.


2013 ◽  
Vol 25 (7) ◽  
pp. 1111-1121 ◽  
Author(s):  
Kristjan Kalm ◽  
Matthew H. Davis ◽  
Dennis Norris

Much of what we need to remember consists of sequences of stimuli, experiences, or events. Repeated presentation of a specific sequence establishes a more stable long-term memory, as shown by increased recall accuracy over successive trials of an STM task. Here we used fMRI to study the neural mechanisms that underlie sequence learning in the auditory–verbal domain. Specifically, we track the emergence of neural representations of sequences over the course of learning using multivariate pattern analysis. For this purpose, we use a serial recall task, in which participants have to recall overlapping sequences of letter names, with some of those sequences being repeated and hence learned over the course of the experiment. We show that voxels in the hippocampus come to encode the identity of specific repeated sequences although the letter names were common to all sequences in the experiment. These changes could have not been caused by changes in overall level of activity or to fMRI signal-to-noise ratios. Hence, the present results go beyond conventional univariate fMRI methods in showing a critical contribution of medial-temporal lobe memory systems to establishing long-term representations of verbal sequences.


2020 ◽  
Author(s):  
Xiong Jiang ◽  
James H. Howard ◽  
G. Wiliam Rebeck ◽  
R. Scott Turner

ABSTRACTSpatial inhibition of return (IOR) refers to the phenomenon by which individuals are slower to respond to stimuli appearing at a previously cued location compared to un-cued locations. Here we provide evidence supporting that spatial IOR is mildly impaired in individuals with mild cognitive impairment (MCI) or mild Alzheimer’s disease (AD), and the impairment is readily detectable using a novel double cue paradigm. Furthermore, reduced spatial IOR in high-risk healthy older individuals is associated with reduced memory and other neurocognitive task performance, suggesting that the novel double cue spatial IOR paradigm may be useful in detecting MCI and early AD.SIGNIFICANCE STATEMENTNovel double cue spatial inhibition of return (IOR) paradigm revealed a robust effect IOR deficits in individuals with mild cognitive impairment (MCI) or mild Alzheimer’s disease (AD)Spatial IOR effect correlates with memory performance in healthy older adults at a elevated risk of Alzheimer’s disease (with a family history or APOE e4 allele)The data suggests that double cue spatial IOR may be sensitive to detect early AD pathological changes, which may be linked to disease progress at the posterior brain regions (rather than the medial temporal lobe)


2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.


2021 ◽  
Author(s):  
Niklas Mattsson-Carlgren ◽  
Shorena Janelidze ◽  
Randall Bateman ◽  
Ruben Smith ◽  
Erik Stomrud ◽  
...  

Abstract Alzheimer’s disease is characterized by β-amyloid plaques and tau tangles. Plasma levels of phospho-tau217 (P-tau217) accurately differentiate Alzheimer’s disease dementia from other dementias, but it is unclear to what degree this reflects β-amyloid plaque accumulation, tau tangle accumulation, or both. In a cohort with post-mortem neuropathological data (N=88), both plaque and tangle density contributed independently to higher P-tau217. Several findings were replicated in a cohort with PET imaging (“BioFINDER-2”, N=426), where β-amyloid and tau PET were independently associated to P-tau217. P-tau217 correlated with β-amyloid PET (but not tau PET) in early disease stages, and with both β-amyloid and (more strongly) tau PET in late disease stages. Finally, P-tau217 mediated the association between β-amyloid and tau in both cohorts, especially for tau outside of the medial temporal lobe. These findings support the hypothesis that plasma P-tau217 is increased by both β-amyloid plaques and tau tangles and is congruent with the hypothesis that P-tau is involved in β-amyloid-dependent formation of neocortical tau tangles.


Sign in / Sign up

Export Citation Format

Share Document