scholarly journals The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhenyu Gao ◽  
Yufeng Wang ◽  
Guang Chen ◽  
Anpeng Zhang ◽  
Shenglong Yang ◽  
...  

AbstractThe indica and japonica rice (Oryza sativa) subspecies differ in nitrate (NO3−) assimilation capacity and nitrogen (N) use efficiency (NUE). Here, we show that a major component of this difference is conferred by allelic variation at OsNR2, a gene encoding a NADH/NADPH-dependent NO3− reductase (NR). Selection-driven allelic divergence has resulted in variant indica and japonica OsNR2 alleles encoding structurally distinct OsNR2 proteins, with indica OsNR2 exhibiting greater NR activity. Indica OsNR2 also promotes NO3− uptake via feed-forward interaction with OsNRT1.1B, a gene encoding a NO3− uptake transporter. These properties enable indica OsNR2 to confer increased effective tiller number, grain yield and NUE on japonica rice, effects enhanced by interaction with an additionally introgressed indica OsNRT1.1B allele. In consequence, indica OsNR2 provides an important breeding resource for the sustainable increases in japonica rice yields necessary for future global food security.

2001 ◽  
Vol 36 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Luís Sangoi ◽  
Márcio Ender ◽  
Altamir Frederico Guidolin ◽  
Milton Luiz de Almeida ◽  
Valmor Antônio Konflanz

Genetic selection of maize hybrids is often conducted using high N rates during the breeding cycle. This procedure may either lead to the release of genotypes that present nitrogen luxury consumption or require a stronger N input to accomplish their yield potential. This work was carried out to evaluate the effects of N rates on grain yield and N use efficiency of hybrids cultivated in different decades in Southern Brazil. The trial was performed in Lages, Santa Catarina State. A split plot design was used. Hybrids Ag 12, Ag 28, Ag 303 and Ag 9012, released during the 60's, 70's, 80's and 90's, respectively, were evaluated in the main plots. Nitrogen rates equivalent to 0, 50, 100 and 200 kg ha-1 were side-dressed in the split-plots when each hybrid had six fully expanded leaves. Modern-day hybrid Ag 9012 had higher grain yield than hybrids of earlier eras, regardless of N rates. Under high doses of N, the older hybrids Ag 12 and Ag 28 took up more N and presented higher values of shoot dry matter at flowering than Ag 9012. Nonetheless, they set less grains per ear which contributed to decrease their grain yield and N use efficiency.


Author(s):  
N. V. Kozel ◽  
M. S. Radyuk ◽  
T. V. Samovich ◽  
I. A. Dremuk ◽  
L. S. Gabrielyan

The effect of LED lighting of different spectral composition on the productivity of Spirulina platensis, an accumulation of protein in alga cells and an expression of the nitrate reductase gene has been studied. It was shown that LED lighting with a predominance of the red component in the emission spectrum allows achieving 9–29 % higher alga productivity compared to using fluorescent lamp illumination. Illumination with single blue light resulted in significant (83 %) decrease in the productivity of Spirulina platensiswhich apparently was due to the absence of the yellow and red components in the illuminator spectral composition, which are most effectively absorbed by phycocyanin. A positive correlation between an increase in the productivity of alga and the accumulation of protein in its cells was found. So, by using an illuminator with red LEDs, the protein content increased by 21 % calculated per gram of dry weight and 47 % calculated per liter of suspension relative to the control. Analysis of the expression of the Nar gene encoding nitrate reductase in Spirulina platensiscells did not reveal a direct dependence between an increasing protein accumulation and an expression level of the Nar gene in the most promising in terms of biomass and protein yield sample of alga, growing under red LEDs. This indicates the crucial role of the photosynthetic activity of Spirulina platensiscells in increasing productivity and protein synthesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Matías Schierenbeck ◽  
Ahmad M. Alqudah ◽  
Ulrike Lohwasser ◽  
Rasha A. Tarawneh ◽  
María Rosa Simón ◽  
...  

Abstract Background The future productivity of wheat (T. aestivum L.) as the most grown crop worldwide is of utmost importance for global food security. Thousand kernel weight (TKW) in wheat is closely associated with grain architecture-related traits, e.g. kernel length (KL), kernel width (KW), kernel area (KA), kernel diameter ratio (KDR), and factor form density (FFD). Discovering the genetic architecture of natural variation in these traits, identifying QTL and candidate genes are the main aims of this study. Therefore, grain architecture-related traits in 261 worldwide winter accessions over three field-year experiments were evaluated. Results Genome-wide association analysis using 90K SNP array in FarmCPU model revealed several interesting genomic regions including 17 significant SNPs passing false discovery rate threshold and strongly associated with the studied traits. Four of associated SNPs were physically located inside candidate genes within LD interval e.g. BobWhite_c5872_589 (602,710,399 bp) found to be inside TraesCS6A01G383800 (602,699,767–602,711,726 bp). Further analysis reveals the four novel candidate genes potentially involved in more than one grain architecture-related traits with a pleiotropic effects e.g. TraesCS6A01G383800 gene on 6A encoding oxidoreductase activity was associated with TKW and KA. The allelic variation at the associated SNPs showed significant differences betweeen the accessions carying the wild and mutated alleles e.g. accessions carying C allele of BobWhite_c5872_589, TraesCS6A01G383800 had significantly higher TKW than the accessions carying T allele. Interestingly, these genes were highly expressed in the grain-tissues, demonstrating their pivotal role in controlling the grain architecture. Conclusions These results are valuable for identifying regions associated with kernel weight and dimensions and potentially help breeders in improving kernel weight and architecture-related traits in order to increase wheat yield potential and end-use quality.


2016 ◽  
Vol 19 (2) ◽  
pp. 81
Author(s):  
NFN Ruchjaniningsih ◽  
Muh. Thamrin

<p>Genotype Performance of Early Maturity Maize with N High and Low Dosage Fertilization in Irrigated Land After Rice Planting in South Sulawesi. Ruchjaniningsih and Muh. Thamrin. To reduce the negative impact of excessive fertilizer N use efficiency of N needs to be done, especially on maize that much need N. N use efficiency can be improved through the establishment of adaptive varieties of maize N fertilization is low, it is necessary for the characterization of the plant as a basis for screening genotypes. Some strains of maize have been evaluated wetland in Bontomanai, Bantaeng district, South Sulawesi, on May to December 2009, the result of the appearance of phenotypic characters and yield components. The experiments were arranged in a randomized block design with a factorial treatment genotype A (X01904 ), B (X02804 ), C (X02904 ), D (X03404), E (X03604), F (Bima- 1), G (Lamuru), H (Gumarang), and local B yellow for comparison with N fertilization (high and low dose) repeated three times. The results showed that fertilizer N 400 kg/ha had a greater impact on the character of the observed fertilization N 200 kg/ha. Genotypes that have high yield potential in rice fields is Lamuru cultivars (13.44 t/ha) and X01904 (13.33 t/ha). All genotypes tested from early maturing (76-84 dap). Genotype X01904, X02804, X02904, X03404, and Bima-1 excel in the characters observed compared to check varieties. Check varieties (local) is superior genotypes were tested on plant height and ear height layout.</p><p> </p><p><strong>Abstrak</strong></p><p>Untuk mengurangi dampak negatif pemupukan N yang berlebihan perlu dilakukan efisiensi penggunaan N, terutama pada tanaman jagung yang banyak membutuhkan N. Efisiensi penggunaan N dapat ditingkatkan melalui pembentukan varietas jagung adaptif pemupukan N rendah, untuk itu perlu dilakukan karakterisasi tanaman sebagai dasar skrining genotipe. Beberapa galur jagung telah dievaluasi pada lahan sawah di Bontomanai, Kabupaten Bantaeng, Sulawesi Selatan, pada Mei- Desember 2009, untuk melihat penampilan fenotipik karakter hasil dan komponen hasil. Percobaan ditata dalam rancangan acak kelompok pola faktorial dengan perlakuan genotipe A (X01904), B (X02804), C (X02904), D (X03404), E(X03604), F (Bima-1), G (Lamuru), H (Gumarang), dan lokal B Kuning sebagai pembanding dengan pemupukan N (dosis tinggi dan rendah) diulang tiga kali. Hasil penelitian menunjukkan bahwa pemupukan N 400 kg/ha berpengaruh lebih baik terhadap karakter yang diamati dari pemupukan N 200 kg/ha. Genotipe yang mempunyai potensi hasil tinggi di lahan sawah adalah kultivar Lamuru (13,44 t/ha) dan X01904 (13,33 t/ha). Semua genotipe yang diuji berumur genjah (76-84 hst). Genotipe X01904, X02804, X02904, X03404, dan Bima-1 unggul dalam karakter-karakter yang diamati dibandingkan dengan varietas pembanding. Varietas pembanding (lokal) lebih unggul dibandingkan dengan genotipe yang diuji pada karakter tinggi tanaman dan tinggi letak tongkol.</p>


2004 ◽  
Vol 142 (5) ◽  
pp. 495-502 ◽  
Author(s):  
K. SIELING

Farmers commonly apply slurry when soil conditions are suitable for spreading. In order to improve slurry nitrogen (N) use efficiency, effects of split application of pig slurry according to the crop N demand on yield were tested in 1994/95–2001/02. The crop rotation was winter oilseed rape (OSR) – winter wheat – winter barley. N was applied as pig slurry or as mineral N fertilizer (each of 0, 40 or 80 kg N/ha, total N amount: 0–240 kg N/ha) at three dates. Each year, the treatments occurred in all three crops of the rotation and were located on the same plots. On average, mineral N fertilizer led to higher grain yields in all crops (+0·33 t/ha in OSR, +0·57 t/ha in wheat, and +0·20 t/ha in barley) compared with slurry application, presumably due to a slower N mineralization of the organic fraction. However, the large year to year variation resulted in high error estimates, leading to no significant differences in yield. Taking only the ammonium amount of the slurry into account, there was no significant difference in yield between the two N sources. Yield potential was similar in both slurry and mineral N treatments, but higher N amounts were necessary on the slurry plots. Therefore, slurry N-use efficiency (NUE) remained lower than that of mineral N. However, compared with a single dose, growth-specific slurry application according to the crop demand, as made with mineral N fertilizers, increased NUE.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marko Ivić ◽  
Sonja Grljušić ◽  
Ivana Plavšin ◽  
Krešimir Dvojković ◽  
Ana Lovrić ◽  
...  

Wheat cultivars differ in their response to nitrogen (N) fertilizer, both in terms of its uptake and utilization. Characterizing this variation is an important step in improving the N use efficiency (NUE) of future cultivars while maximizing production (yield) potential. In this study, we compared the agronomic performance of 48 diverse wheat cultivars released between 1936 and 2016 at low and high N input levels in field conditions to assess the relationship between NUE and its components. Agronomic trait values were significantly lower in the low N treatment, and the cultivars tested showed a significant variation for all traits (apart from the N remobilization efficiency), indicating that response is genotype-dependent, although significant genotype × environment effects were also observed. Overall, we show a varietal improvement in NUE over time of 0.33 and 0.30% year–1 at low and high N, respectively, and propose that this is driven predominantly by varietal selection for increased yield. More complete understanding of the components of these improvements will inform future targeted breeding and selection strategies to support a reduction in fertilizer use while maintaining productivity.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
M. K. Singh ◽  
VINOD KUMAR ◽  
SHAMBHU PRASAD

A field experiment was carried out during the kharif of 2014 and 2015 to evaluate the yield potential, economics and thermal utilization in eleven finger millet varieties under the rainfed condition of the sub-humid environment of South Bihar of Eastern India. Results revealed that the significantly higher grain yield (20.41 q ha-1), net returns (Rs 25301) and B: C ratio (1.51) was with the finger millet variety ‘GPU 67’ but was being at par to ‘GPU28’and ‘RAU-8’, and significantly superior over remaining varieties. The highest heat units (1535.1oC day), helio-thermal units (7519.7oC day hours), phenothermal index (19.4 oC days day-1) were recorded with variety ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ and lowest in ‘VL 149’ at 50 % anthesis stage. Similarly, the highest growing degree days (2100 oC day), helio-thermal units (11035.8 oC day hours) were noted with ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ at maturity. The highest heat use efficiency (0.97 kg ha-1 oC day) and helio-thermal use efficiency (0.19 kg ha-1 oC day hour) were in ‘GPU 67’ followed by ‘VL 315’.


Sign in / Sign up

Export Citation Format

Share Document