scholarly journals Rapid and dynamic processing of face pareidolia in the human brain

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Susan G. Wardle ◽  
Jessica Taubert ◽  
Lina Teichmann ◽  
Chris I. Baker

Abstract The human brain is specialized for face processing, yet we sometimes perceive illusory faces in objects. It is unknown whether these natural errors of face detection originate from a rapid process based on visual features or from a slower, cognitive re-interpretation. Here we use a multifaceted approach to understand both the spatial distribution and temporal dynamics of illusory face representation in the brain by combining functional magnetic resonance imaging and magnetoencephalography neuroimaging data with model-based analysis. We find that the representation of illusory faces is confined to occipital-temporal face-selective visual cortex. The temporal dynamics reveal a striking evolution in how illusory faces are represented relative to human faces and matched objects. Illusory faces are initially represented more similarly to real faces than matched objects are, but within ~250 ms, the representation transforms, and they become equivalent to ordinary objects. This is consistent with the initial recruitment of a broadly-tuned face detection mechanism which privileges sensitivity over selectivity.

2016 ◽  
Author(s):  
Seyma Bayrak ◽  
Philipp Hövel ◽  
Vesna Vuksanovic

This study combines experimental and modeling approaches in order to investigate the temporal dynamics of the human brain at rest. The dynamics of the neuronal activity is modeled with FitzHugh-Nagumo oscillators and the blood-oxygen-level-dependent (BOLD) time series is inferred via the Balloon-Windkessel hemodynamic model. The simulations are based on structural connections that are derived from diffusion-weighted magnetic resonance imaging measurements yielding anatomical probabilities between the considered brain regions of interest. In addition, the length of the fiber tracks allows for inference of coupling delays due to finite signal propagation velocities. We aim (i) to investigate the network topology of our neuroimaging data and (ii) how randomization of structural connections influence dynamics on top of it. The network characteristics of the structural connectivity data are compared to density-matched Erdős-Rényi random graphs. Furthermore, the neuronal and BOLD activity are modeled on both real and random (Erdős-Rényi type) graphs. The simulated temporal dynamics on both graphs are compared statistically to capture whether the spatial organization of these network affects the modeled time series. Results supported that key topological network properties such as small-worldness of our neuroimaging data are distinguishable from random networks. Moreover, the simulated BOLD activity on real and random graphs are observed to be dissimilar. The difference of the modeled temporal dynamics on the brain and random graphs suggests that anatomical connections in the human brain together with dynamical self-organization are crucial for the temporal evolution of the resting-state activity.


2016 ◽  
Author(s):  
Seyma Bayrak ◽  
Philipp Hövel ◽  
Vesna Vuksanovic

This study combines experimental and modeling approaches in order to investigate the temporal dynamics of the human brain at rest. The dynamics of the neuronal activity is modeled with FitzHugh-Nagumo oscillators and the blood-oxygen-level-dependent (BOLD) time series is inferred via the Balloon-Windkessel hemodynamic model. The simulations are based on structural connections that are derived from diffusion-weighted magnetic resonance imaging measurements yielding anatomical probabilities between the considered brain regions of interest. In addition, the length of the fiber tracks allows for inference of coupling delays due to finite signal propagation velocities. We aim (i) to investigate the network topology of our neuroimaging data and (ii) how randomization of structural connections influence dynamics on top of it. The network characteristics of the structural connectivity data are compared to density-matched Erdős-Rényi random graphs. Furthermore, the neuronal and BOLD activity are modeled on both real and random (Erdős-Rényi type) graphs. The simulated temporal dynamics on both graphs are compared statistically to capture whether the spatial organization of these network affects the modeled time series. Results supported that key topological network properties such as small-worldness of our neuroimaging data are distinguishable from random networks. Moreover, the simulated BOLD activity on real and random graphs are observed to be dissimilar. The difference of the modeled temporal dynamics on the brain and random graphs suggests that anatomical connections in the human brain together with dynamical self-organization are crucial for the temporal evolution of the resting-state activity.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2017 ◽  
Vol 128 ◽  
pp. 89-97 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Qi Li ◽  
Zhao Wang ◽  
Xun Liu ◽  
Ya Zheng

2013 ◽  
Vol 753-755 ◽  
pp. 2941-2944
Author(s):  
Ming Hui Zhang ◽  
Yao Yu Zhang

Seeing that human face features are unique, an increasing number of face recognition algorithms on existing ATM are proposed. Since face detection is a primary link of face recognition, our system adopts AdaBoost algorithm which is based on face detection. Experiment results demonstrated that the computing time of face detection using this algorithm is about 70ms, and the single and multiple human faces can be effectively measured under well environment, which meets the demand of the system.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaopeng Si ◽  
Shunli Han ◽  
Kuo Zhang ◽  
Ludan Zhang ◽  
Yulin Sun ◽  
...  

The electroencephalography (EEG) microstate has recently emerged as a new whole-brain mapping tool for studying the temporal dynamics of the human brain. Meanwhile, the neuromodulation effect of external stimulation on the human brain is of increasing interest to neuroscientists. Acupuncture, which originated in ancient China, is recognized as an external neuromodulation method with therapeutic effects. Effective acupuncture could elicit the deqi effect, which is a combination of multiple sensations. However, whether the EEG microstate could be used to reveal the neuromodulation effect of acupuncture with deqi remains largely unclear. In this study, multichannel EEG data were recorded from 16 healthy subjects during acupuncture manipulation, as well as during pre- and post-manipulation tactile controls and pre- and post-acupuncture rest controls. As the basic acupuncture unit for regulating the central nervous system, the Hegu acupoint was used in this study, and each subject’s acupuncture deqi behavior scores were collected. To reveal the neuroimaging evidence of acupuncture with deqi, EEG microstate analysis was conducted to obtain the microstate maps and microstate parameters for different conditions. Furthermore, Pearson’s correlation was analyzed to investigate the correlation relationship between microstate parameters and deqi behavioral scores. Results showed that: (1) compared with tactile controls, acupuncture manipulation caused significantly increased deqi behavioral scores. (2) Acupuncture manipulation significantly increased the duration, occurrence, and contribution parameters of microstate C, whereas it decreased those parameters of microstate D. (3) Microstate C’s duration parameter showed a significantly positive correlation with acupuncture deqi behavior scores. (4) Acupuncture manipulation significantly increased the transition probabilities with microstate C as node, whereas it reduced the transition probabilities with microstate D as node. (5) Microstate B→C’s transition probability also showed a significantly positive correlation with acupuncture deqi behavior scores. Taken together, the temporal dynamic feature of EEG microstate could be used as objective neuroimaging evidence to reveal the neuromodulation effect of acupuncture with deqi.


2018 ◽  
Author(s):  
Solly Aryza

It is very challenging to recognize a face from an image due to the wide variety of face and the uncertain of face position. The research on detecting human faces in color image and in video sequence has been attracted with more and more people. In this paper, we propose a novel face detection method that achieves better detection rates. The new face detection algorithms based on skin color model in YCgCr chrominance space. Firstly, we build a skin Gaussian model in Cg-Cr color space. Secondly, a calculation of correlation coefficient is performed between the given template and the candidates. Experimental results demonstrate that our system has achieved high detection rates and low false positives over a wide range of facial variations in color, position and varying lighting conditions.


2021 ◽  
Vol 4 (1) ◽  
pp. 67-77
Author(s):  
Fransiska Sisilia Mukti ◽  
Lia Farokhah ◽  
Nur Lailatul Aqromi

Bus is one of public transportation and as the most preferable by Indonesian to support their mobility. The high number of bus traffics then demands the bus management to provide the maximum service for their passenger, in order to gain public trust. Unfortunately, in the reality passenger list’s fraud is often faced by the bus management, there is a mismatch list between the amount of deposits made by bus driver and the number of passengers carried by the bus, and as the result it caused big loss for the Bus management. Automatic Passenger Counting (APC) then as an artificial intelligence program that is considered to cope with the bus management problems. This research carried out an APC technology based on passenger face detection using the Viola-Jones method, which is integrated with an embedded system based on the Internet of Things in the processing and data transmission. To detect passenger images, a webcam is provided that is connected to the Raspberry pi which is then sent to the server via the Internet to be displayed on the website provided. The system database will be updated within a certain period of time, or according to the stop of the bus (the system can be adjusted according to management needs). The system will calculate the number of passengers automatically; the bus management can export passenger data whenever as they want. There are 3 main points in the architecture of modeling system, they are information system design, device architecture design, and face detection mechanism design to calculate the number of passengers. A system design test is carried out to assess the suitability of the system being built with company needs. Then, based on the questionnaire distributed to the respondent, averagely 85.12 % claim that the Face detection system is suitability. The score attained from 4 main aspects including interactivity, aesthetics, layout and personalization


2012 ◽  
Vol 532-533 ◽  
pp. 974-978
Author(s):  
Xue Cong Lv ◽  
Zheng Bing Zhang

To implement the problem that the side face detector is slow and its detection rate is low, in this paper, we choose the Adaboost face detection algorithm based on statistics. Then the characteristics of imaging processing software OpenCV and the principle and training flow of Adaboost face detector are introduced. Further, combination with the supplement Haar-like features improved, the full range of face detection based on OpenCV in CodeBlocks is achievement, thereby decreasing the loss of the human faces.


Author(s):  
Pawel T. Puslecki

The aim of this chapter is the overall and comprehensive description of the machine face processing issue and presentation of its usefulness in security and forensic applications. The chapter overviews the methods of face processing as the field deriving from various disciplines. After a brief introduction to the field, the conclusions concerning human processing of faces that have been drawn by the psychology researchers and neuroscientists are described. Then the most important tasks related to the computer facial processing are shown: face detection, face recognition and processing of facial features, and the main strategies as well as the methods applied in the related fields are presented. Finally, the applications of digital biometrical processing of human faces are presented.


Sign in / Sign up

Export Citation Format

Share Document