scholarly journals MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Roman Schmidt ◽  
Tobias Weihs ◽  
Christian A. Wurm ◽  
Isabelle Jansen ◽  
Jasmin Rehman ◽  
...  

AbstractThe recently introduced minimal photon fluxes (MINFLUX) concept pushed the resolution of fluorescence microscopy to molecular dimensions. Initial demonstrations relied on custom made, specialized microscopes, raising the question of the method’s general availability. Here, we show that MINFLUX implemented with a standard microscope stand can attain 1–3 nm resolution in three dimensions, rendering fluorescence microscopy with molecule-scale resolution widely applicable. Advances, such as synchronized electro-optical and galvanometric beam steering and a stabilization that locks the sample position to sub-nanometer precision with respect to the stand, ensure nanometer-precise and accurate real-time localization of individually activated fluorophores. In our MINFLUX imaging of cell- and neurobiological samples, ~800 detected photons suffice to attain a localization precision of 2.2 nm, whereas ~2500 photons yield precisions <1 nm (standard deviation). We further demonstrate 3D imaging with localization precision of ~2.4 nm in the focal plane and ~1.9 nm along the optic axis. Localizing with a precision of <20 nm within ~100 µs, we establish this spatio-temporal resolution in single fluorophore tracking and apply it to the diffusion of single labeled lipids in lipid-bilayer model membranes.

1989 ◽  
Vol 94 (4) ◽  
pp. 617-624
Author(s):  
S.J. Wright ◽  
J.S. Walker ◽  
H. Schatten ◽  
C. Simerly ◽  
J.J. McCarthy ◽  
...  

Applications of the tandem scanning confocal microscope (TSM) to fluorescence microscopy and its ability to resolve fluorescent biological structures are described. The TSM, in conjunction with a cooled charge-coupled device (cooled CCD) and conventional epifluorescence light source and filter sets, provided high-resolution, confocal data, so that different fluorescent cellular components were distinguished in three dimensions within the same cell. One of the unique features of the TSM is the ability to image fluorochromes excited by ultraviolet light (e.g. Hoechst, DAPI) in addition to fluorescein and rhodamine. Since the illumination is dim, photobleaching is insignificant and prolonged viewing of living specimens is possible. Series of optical sections taken in the Z-axis with the TSM were reproduced as stereo images and three-dimensional reconstructions. These data show that the TSM is potentially a powerful tool in fluorescence microscopy for determining three-dimensional relationships of complex structures within cells labeled with multiple fluorochromes.


Author(s):  
Christopher L. Hoy ◽  
Jay Stockley ◽  
Kelly Kluttz ◽  
Doug McKnight ◽  
Lance Hosting ◽  
...  

2018 ◽  
Author(s):  
Cody Greer ◽  
Timothy E. Holy

Among optical imaging techniques light sheet fluorescence microscopy stands out as one of the most attractive for capturing high-speed biological dynamics unfolding in three dimensions. The technique is potentially millions of times faster than point-scanning techniques such as two-photon microscopy. However current-generation light sheet microscopes are limited by volume scanning rate and/or camera frame rate. We present speed-optimized Objective Coupled Planar Illumination (OCPI) microscopy, a fast light sheet technique that avoids compromising image quality or photon efficiency. We increase volume scanning rate to 40 Hz for volumes up to 700 µm thick and introduce Multi-Camera Image Sharing (MCIS), a technique to scale imaging rate by parallelizing acquisition across cameras. Finally, we demonstrate fast calcium imaging of the larval zebrafish brain and find a heartbeat-induced artifact that can be removed by filtering when the imaging rate exceeds 15 Hz. These advances extend the reach of fluorescence microscopy for monitoring fast processes in large volumes.


2009 ◽  
Vol 29 (3) ◽  
pp. 670-675
Author(s):  
李勇 Li Yong ◽  
陈云富 Chen Yunfu ◽  
金洪震 Jin Hongzhen ◽  
王辉 Wang Hui
Keyword(s):  

2014 ◽  
Vol 21 (6) ◽  
pp. 1378-1383 ◽  
Author(s):  
Yuki Sekiguchi ◽  
Masaki Yamamoto ◽  
Tomotaka Oroguchi ◽  
Yuki Takayama ◽  
Shigeyuki Suzuki ◽  
...  

Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite namedIDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. NamedG-SITENNO, the other suite is an automated version of the originalSITENNOsuite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.


2009 ◽  
Vol 9 (9) ◽  
pp. 3163-3195 ◽  
Author(s):  
F. Costabile ◽  
W. Birmili ◽  
S. Klose ◽  
T. Tuch ◽  
B. Wehner ◽  
...  

Abstract. A correct description of fine (diameter <1 μm) and ultrafine (<0.1 μm) aerosol particles in urban areas is of interest for particle exposure assessment but also basic atmospheric research. We examined the spatio-temporal variability of atmospheric aerosol particles (size range 3–800 nm) using concurrent number size distribution measurements at a maximum of eight observation sites in and around Leipzig, a city in Central Europe. Two main experiments were conducted with different time span and number of observation sites (2 years at 3 sites; 1 month at 8 sites). A general observation was that the particle number size distribution varied in time and space in a complex fashion as a result of interaction between local and far-range sources, and the meteorological conditions. To identify statistically independent factors in the urban aerosol, different runs of principal component (PC) analysis were conducted encompassing aerosol, gas phase, and meteorological parameters from the multiple sites. Several of the resulting PCs, outstanding with respect to their temporal persistence and spatial coverage, could be associated with aerosol particle modes: a first accumulation mode ("droplet mode", 300–800 nm), considered to be the result of liquid phase processes and far-range transport; a second accumulation mode (centered around diameters 90–250 nm), considered to result from primary emissions as well as aging through condensation and coagulation; an Aitken mode (30–200 nm) linked to urban traffic emissions in addition to an urban and a rural Aitken mode; a nucleation mode (5–20 nm) linked to urban traffic emissions; nucleation modes (3–20 nm) linked to photochemically induced particle formation; an aged nucleation mode (10–50 nm). Additional PCs represented only local sources at a single site, or infrequent phenomena. In summary, the analysis of size distributions of high time and size resolution yielded a surprising wealth of statistical aerosol components occurring in the urban atmosphere over one single city. A paradigm on the behaviour of sub-μm urban aerosol particles is proposed, with recommendations how to efficiently monitor individual sub-fractions across an entire city.


2020 ◽  
Vol 12 (24) ◽  
pp. 4043
Author(s):  
Hongyi Li ◽  
Xinlu Liu ◽  
Bifeng Hu ◽  
Asim Biswas ◽  
Qingsong Jiang ◽  
...  

Information on spatial, temporal, and depth variability of soil salinity at field and landscape scales is important for a variety of agronomic and environment concerns including irrigation in arid and semi-arid areas. However, challenges remain in characterizing and monitoring soil secondary salinity as it can largely be impacted by managements including irrigation and mulching in addition to natural factors. The objective of this study is to evaluate apparent electrical conductivity (ECa)-directed soil sampling as a basis for monitoring management-induced spatio-temporal change in soil salinity in three dimensions. A field experiment was conducted on an 18-ha saline-sodic field from Alar’s Agricultural Science and Technology Park, China between March, and November 2018. Soil ECa was measured using an electromagnetic induction (EMI) sensor for four times over the growing season and soil core samples were collected from 18 locations (each time) selected using EMI survey data as a-priori information. A multi-variate regression-based predictive relationship between ECa and laboratory-measured electrical conductivity (ECe) was used to predict EC with confidence (R2 between 0.82 and 0.99). A three-dimensional inverse distance weighing (3D-IDW) interpolation clearly showed a strong variability in space and time and with depths within the study field which were mainly attributed to the human management factors including irrigation, mulching, and uncovering of soils and natural factors including air temperature, evaporation, and groundwater level. This study lays a foundation of characterizing secondary salinity at a field scale for precision and sustainable management of agricultural lands in arid and semi-arid areas.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Lisa N. Waylen ◽  
Hieu T. Nim ◽  
Luciano G. Martelotto ◽  
Mirana Ramialison

Abstract Unravelling spatio-temporal patterns of gene expression is crucial to understanding core biological principles from embryogenesis to disease. Here we review emerging technologies, providing automated, high-throughput, spatially resolved quantitative gene expression data. Novel techniques expand on current benchmark protocols, expediting their incorporation into ongoing research. These approaches digitally reconstruct patterns of embryonic expression in three dimensions, and have successfully identified novel domains of expression, cell types, and tissue features. Such technologies pave the way for unbiased and exhaustive recapitulation of gene expression levels in spatial and quantitative terms, promoting understanding of the molecular origin of developmental defects, and improving medical diagnostics.


Sign in / Sign up

Export Citation Format

Share Document