scholarly journals The essential role of PRAK in tumor metastasis and its therapeutic potential

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuqing Wang ◽  
Wei Wang ◽  
Haoming Wu ◽  
Yu Zhou ◽  
Xiaodan Qin ◽  
...  

AbstractMetastasis is the leading cause of cancer-related death. Despite the recent advancements in cancer treatment, there is currently no approved therapy for metastasis. The present study reveals a potent and selective activity of PRAK in the regulation of tumor metastasis. While showing no apparent effect on the growth of primary breast cancers or subcutaneously inoculated tumor lines, Prak deficiency abrogates lung metastases in PyMT mice or mice receiving intravenous injection of tumor cells. Consistently, PRAK expression is closely associated with metastatic risk in human cancers. Further analysis indicates that loss of function of PRAK leads to a pronounced inhibition of HIF-1α protein synthesis, possibly due to reduced mTORC1 activities. Notably, pharmacological inactivation of PRAK with a clinically relevant inhibitor recapitulates the anti-metastatic effect of Prak depletion, highlighting the therapeutic potential of targeting PRAK in the control of metastasis.

2019 ◽  
Vol 5 (9) ◽  
pp. eaaw6127 ◽  
Author(s):  
Pengcheng Wang ◽  
Madhav Sachar ◽  
Jie Lu ◽  
Amina I. Shehu ◽  
Junjie Zhu ◽  
...  

Erythropoietic protoporphyria (EPP) is an inherited disease caused by loss-of-function mutations of ferrochelatase, an enzyme in the heme biosynthesis pathway that converts protoporphyrin IX (PPIX) into heme. PPIX accumulation in patients with EPP leads to phototoxicity and hepatotoxicity, and there is no cure. Here, we demonstrated that the PPIX efflux transporter ABCG2 (also called BCRP) determines EPP-associated phototoxicity and hepatotoxicity. We found that ABCG2 deficiency decreases PPIX distribution to the skin and therefore prevents EPP-associated phototoxicity. We also found that ABCG2 deficiency protects against EPP-associated hepatotoxicity by modulating PPIX distribution, metabolism, and excretion. In summary, our work has uncovered an essential role of ABCG2 in the pathophysiology of EPP, which suggests the potential for novel strategies in the development of therapy for EPP.


Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev185298
Author(s):  
Zhi Ye ◽  
David Kimelman

ABSTRACTThe early vertebrate embryo extends from anterior to posterior due to the addition of neural and mesodermal cells from a neuromesodermal progenitor (NMp) population located at the most posterior end of the embryo. In order to produce mesoderm throughout this time, the NMps produce their own niche, which is high in Wnt and low in retinoic acid. Using a loss-of-function approach, we demonstrate here that the two most abundant Hox13 genes in zebrafish have a novel role in providing robustness to the NMp niche by working in concert with the niche-establishing factor Brachyury to allow mesoderm formation. Mutants lacking both hoxa13b and hoxd13a in combination with reduced Brachyury activity have synergistic posterior body defects, in the strongest case producing embryos with severe mesodermal defects that phenocopy brachyury null mutants. Our results provide a new way of understanding the essential role of the Hox13 genes in early vertebrate development.This article has an associated ‘The people behind the papers’ interview.


2021 ◽  
Author(s):  
Aouad Patrik ◽  
Zhang Yueyun ◽  
Celine Stibolt ◽  
Mani Sendurai ◽  
Georgios Sflomos ◽  
...  

Estrogen receptor α-positive (ER+) breast cancers (BCs) represent more than 70% of all breast cancers and pose a particular clinical challenge because they recur up to decades after initial diagnosis and treatment. The mechanisms governing tumor cell dormancy and latent disease remain elusive due to a lack of adequate models. Here, we compare tumor progression of ER+ and triple-negative (TN) BC subtypes with a clinically relevant mouse intraductal xenografting approach (MIND). Both ER+ and TN BC cells disseminate already during the in situstage. However, TN disseminated tumor cells (DTCs) proliferate at the same rate as cells at the primary site and give rise to macro-metastases. ER+ DTCs have low proliferative indices, form only micro-metastases and lose epithelial characteristics. Expression of CDH1 is decreased whereas the mesenchymal marker VIM and the transcription factors, ZEB1/ZEB2, which control epithelial-mesenchymal plasticity (EMP) are increased. EMP is not detected earlier during ER+ BC development and not required for invasion or metastasis. In vivo, forced transition to the epithelial state through ectopic E-cadherin expression overcomes dormancy with increased growth of lung metastases. We conclude that EMP is essential for the generation of a dormant cell state and the development of latent disease. Targeting exit from EMP is of therapeutic potential.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Armita Mahdavi Gorabi ◽  
Nasim Kiaie ◽  
Saeed Aslani ◽  
Thozhukat Sathyapalan ◽  
Tannaz Jamialahmadi ◽  
...  

Statins, which are functionally known as 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) inhibitors, are lipid-lowering compounds widely prescribed in patients with cardiovascular diseases (CVD). Several biological and therapeutic functions have been attributed to statins, including neuroprotection, antioxidation, anti-inflammation, and anticancer effects. Pharmacological characteristics of statins have been attributed to their involvement in the modulation of several cellular signaling pathways. Over the past few years, the therapeutic role of statins has partially been attributed to the induction of autophagy, which is critical in maintaining cellular homeostasis and accounts for the removal of unfavorable cells or specific organelles within cells. Dysregulated mechanisms of the autophagy pathway have been attributed to the etiopathogenesis of various disorders, including neurodegenerative disorders, malignancies, infections, and even aging. Autophagy functions as a double-edged sword during tumor metastasis. On the one hand, it plays a role in inhibiting metastasis through restricting necrosis of tumor cells, suppressing the infiltration of the inflammatory cell to the tumor niche, and generating the release of mediators that induce potent immune responses against tumor cells. On the other hand, autophagy has also been associated with promoting tumor metastasis. Several anticancer medications which are aimed at inducing autophagy in the tumor cells are related to statins. This review article discusses the implications of statins in the induction of autophagy and, hence, the treatment of various disorders.


2021 ◽  
Author(s):  
Annalena Wieland ◽  
Pamela L. Strissel ◽  
Hannah Schorle ◽  
Ezgi Bakirci ◽  
Dieter Janzen ◽  
...  

Abstract Background: Glioblastoma multiforme (GBM) and triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with very poor patient outcomes. GBM uses axons and vessels as migratory cues to disseminate, however it is not known, if TNBC shares the same behavior. There is a need to understand brain tumor cell spreading and if GBM and TNBC have similar migration properties involving the signaling pathway RHOB-ROCK-PTEN. We tested for durotaxis, adherence and migration of GBM and TNBC using live-cell imaging and performed molecular analyses on three-dimensional (3D) structures.Methods: Aligned 3D printed scaffolds and microfibers were designed to mimic brain axon tracts and vessels for migration. GBM and TNBC cell lines, each with opposing PTEN genotypes, were analysed with RHO, ROCK and PTEN inhibitors and rescuing PTEN function using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while SEM, confocal microscopy and cell tracking addressed cell morphology. Results: GBM and TNBC with homozygote PTEN loss of function and RHOB high expression were amoeboid shaped and demonstrated enhanced durotaxis, adhesion and migration on 3D microfibers, in contrast to PTEN wildtype GBM and TNBC showing elongated cells and low RHOB. RNA-sequencing exhibited that RHOB was significantly the highest expressed gene in GBM PTEN loss of function cells. Pathway inhibitors and PTEN rescue of function verified an essential role of RHOB-ROCK-PTEN signaling for durotaxis, adhesion, migration, cell morphology and plasticity using 3D printed microfibers. Conclusions: This study validates a significant role of a PTEN genotype for cellular properties including durotaxis, adhesion and migration. GBM and TNBC cells with PTEN loss of function have a greater affinity for stiffer brain structures promoting metastasis. We propose the significance of PTEN and RHOB in cellular oncology not only for primary tumors, but also for metastasizing tumors, where RHOB inhibitors could play an essential role for improved therapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 833-833
Author(s):  
Sophia Adamia ◽  
Mariateresa Fulciniti ◽  
Herve Avet-Loiseau ◽  
Samir B Amin ◽  
Parantu Shah ◽  
...  

Abstract Abstract 833 A growing body of evidence suggests that the genome of a many organisms, particularly mammals is controlled not only by transcription factors but also by post-transcriptional programs that are modulated by the family of small RNA molecules including microRNAs (miRs). miRs can block mRNA translation and affect mRNA stability. We have evaluated profiles of 384 human miRs in CD138+ cells from 79 patients with multiple myeloma (MM), 11 MM cell lines and 9 healthy donors (HD) using qRT-PCR based microRNA array. This analysis has identified a MM specific miRNA signature that significantly correlates with OS (p=0.05) and EFS (p=0.017) of patients. Based on this signature one group of patients clustered with HD suggesting indolent disease while other with cell lines indicating aggressive disease. We identified significant modulation of expression of 61 microRNAs in MM cells compared to normal plasma cells. Specific miRs with established oncogenic and tumor suppressor functions such as miR-155, miR-585 and Let7-f were significantly dysregulated in MM (p<0.001). Modulation of miRs-155, -585 and Let7 were observed most frequently in the group of patients with poor OS and EFS suggesting their crucial role in MM. However biological role of these miRs have not yet been defined. To further evaluate biological function of these most recurrent miRs in MM, we evaluated role of miR-155, let-7f and mir-585 in MM cell lines by gain- and loss- of function experiments. We used locked nucleic acid (LNA) anti-miR probes for loss of function and pre-miR-155 for gain of function studies using them alone or in combination. Although manipulation of all 3 miRs induced 20-25% change in MM cell proliferation and/or induction of apoptosis, combination of anti-miR-let7f with pre-miR-155, and anti-miR-585 in combination with miR-155 had dramatic effects on MM cell proliferation and over 60% cells undergoing apoptosis. To evaluate the targets of these miRs, we have determined effects of these anti-miRs and pre-miR on global gene and miR expression profile in MM alone and in combinations. This analysis identified modulation of cluster of miRs as well as genes critical for cell growth and survival. Next, we have tested efficacy of these miRs in vivo in murine Xenograft model to evaluate their therapeutic potential. Tumor-bearing mice were treated intraperitoneal for four consecutively days with the LNA anti-miR-585 and Let-7 and pre-miR-155 probes and respective controls alone and in combination. We observed that the single LNA anti-miR-585 and let 7 and pre miR-155 treatment reduced tumor size by 36%, 31% and 155% in animal 7 days after treatment. However, significant tumor size reductions were achieved when animals were treated with combinations; anti-miR-Let 7f plus pre-miR-155 (58 %); LNA anti-miR-Let 7f plus LNA anti-miR-585 (56 %); LNA-anti-miR-585 plus pre-miR-155 (74 %).We did not observe any significant systemic toxicity in the animals. In conclusion our results suggest significant biological role for miR-585, let 7f and miR-155 in myeloma, both in vitro and in vivo; it highlights for the first time a concerted activity of combination of miRs and holds a great promise for developing novel therapeutic approach for myeloma. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 28 ◽  
Author(s):  
Ken Matsumoto ◽  
Boon-Huat Bay

: The complement component 1, q subcomponent binding protein (C1QBP/gC1q-R/p32/HABP1/TAP/ YBAP1) is a ubiquitous, multifunctional protein. C1QBP localizes mainly to mitochondria due to its N-terminal mitochondrial localization signal, but it can also be found in different subcellular compartments including the cell surface, nucleus, cytoplasm, and extracellular space. C1QBP has been reported to interact with a variety of proteins that have apparently unrelated functions. C1QBP has also been found to interact with hyaluronic acid and RNA, which suggests that C1QBP has both mitochondrial and extramitochondrial functions. The C1QBP binding sites of many partner proteins are located within basic and intrinsically disordered regions of these molecules, consistent with the hypothesis that C1QBP functions as a molecular chaperone. C1QBP expression is elevated in various types of human cancers, including breast cancer. Moreover, it has been implicated in the development, progression, and metastasis of cancer cells based on loss-of-function and gain-offunction studies using cancer cell lines and xenograft models. Hence C1QBP could be a molecular target in breast cancer therapy. Studies using antibodies, tumor homing peptides such as LyP-1, and small molecules that target C1QBP warrant further investigation as C1QBP is a potential therapeutic target.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2090-2090
Author(s):  
Manujendra N Saha ◽  
Yan Chen ◽  
Jahangir Abdi ◽  
Hong Chang

Abstract Despite advances in recent therapeutic approaches including targeted therapies, multiple myeloma (MM) remains still incurable necessitating the development of novel treatment strategies. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate post-transcriptional gene expression and play a critical role in tumor pathogenesis. Tumor suppressor miRNAs are generally down-regulated in cancer cells compared to their normal counterpart, and their enforced expression indeed represents a promising strategy for cancer treatment. In this study, we sought to characterize the role of miR-29a as a tumor suppressor as well as evaluated its therapeutic potential in MM. miR-29a expression levels were found down-regulated in a panel of 5 MM cell lines, 6 newly diagnosed MM patient samples compared to its expression in normal hematopoietic cells collected from 10 normal healthy individuals suggesting that high expression of miR-29a might be involved in MM pathogenesis. We further assessed the functional significance of miR-29a by both gain- and loss-of-function studies. A significant decrease in cell viability (22-32%, p<0.05), along with induction of apoptosis (30-35%, p<0.05) was observed at 48 hrs in MM cell lines, MM.1S and 8226 transfected with miR-29a compared to cells transfected with scrambled miRNA. In contrast, cell lines transfected with miR-29a antagonist prevented the loss of viability in such cells indicating the specificity of miR-29a. At the molecular level, we have identified c-Myc, an important oncogenic transcription factor known to stimulate MM cell proliferation, as a target of miR-29a. Binding site of miR-29a was first identified by computer algorithm and further confirmed by the use of a 3’UTR of c-Myc reporter (luciferase renilla/firefly) constructs containing, miR-29a target site. Moreover, treatment with PRIMA-Met, a small molecule anti-tumor agent in phase I/II clinical trials, significantly increased the expression of miR-29a (2 to 6-fold) and decreased expression of c-Myc in MM cell lines and primay MM patient samples suggesting an important role of miR-29a in inhibiting proliferation of MM cells. On the other hand, overexpression of c-Myc in 8226 and MM.1S cells at least partially reverted the functional effect of miR-29a or PRIMA-1Metsuggesting a specific role of c-Myc in mediating its anti-proliferative activity. To examine therapeutic potential of our studies, we took advantage of novel lipid based delivery method of miRNA. Intratumor delivery of the miR-29a by intraperitoneal injection route against MM xenografts in SCID mice resulted in a significant inhibition of tumor growth (~60%) at 12 days of treatment and prolongation of survival (median survival increased from 22 days to 35 days, p<0.038) compared to the mice receiving scrambled miRNA. Retrieved tumors from treated mice showed efficient increase in miR-29a (5.5-fold, p=0.025), and decrease in c-Myc protein as well as reduced expression of Ki67 and increase of Tunel expression. Similar phenomenon was observed by systematic delivery of miR-29a (by intraveneous injection) in mice with no significant side effects or toxicity in mice. Our study reveals an important role of miR-29a as a tumor suppressor in mediating anti-tumor activities in MM cells by targeting c-Myc. Our findings provide a proof-of-principle that formulated synthetic miR-29a exerts therapeutic activity in preclinical models, and support a framework for development of miR-29a based treatment strategies in MM patients. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 319 (2) ◽  
pp. G170-G174
Author(s):  
Rana Al-Sadi ◽  
Jessica Engers ◽  
Raz Abdulqadir

Defective intestinal tight-junction (TJ) barrier has been implicated in the pathogenesis of inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), and other inflammatory conditions of the gut. The role of microRNAs (miRNA’s or miR’s) has also been demonstrated in the last two decades in the pathogenesis of IBD and in the regulation of intestinal TJ barrier function. MiRNAs are noncoding regulators of gene expression at the posttranscription level that have an essential role in targeting transcripts encoding proteins of intestinal TJs and their regulators. Many miRNAs have been reported to regulate or deregulate the TJ proteins responsible for the intestinal barrier integrity and intestinal permeability. Many of those miRNAs have been reported to have essential roles in the pathogenesis of IBD. In this mini-review, we summarize the results of studies in the last three years that implicate miRNAs in the defective TJ barrier in relation to IBD. The therapeutic potential of using specific miRNAs to target the intestinal TJ barrier might be of great insight for IBD therapy.


2021 ◽  
Vol 21 ◽  
Author(s):  
Pooja Jaiswal ◽  
Versha Tripathi ◽  
Aakruti Nayak ◽  
Shreya Kataria ◽  
Vladimir Lukashevich ◽  
...  

: Female breast cancer recently surpassed lung cancer and became the most commonly diagnosed cancer worldwide. As per the recent data from WHO, breast cancer accounts for one out of every 8 cancer cases diagnosed among an estimated 2.3 million new cancer cases. Breast cancer is the most prevailing cancer type among women causing the highest number of cancer-related mortality. It has been estimated that in 2020, 68,5000 women died due to this disease. Breast cancers have varying degrees of molecular heterogeneity; therefore, they are divided into various molecular clinical sub types. Recent reports suggest that type 2 diabetes (one of the common chronic diseases worldwide) is linked to the higher incidence, accelerated progression, and aggressiveness of different cancers; especially breast cancer. Breast cancer is hormone-dependent in nature and has a cross-talk with metabolism. A number of antidiabetic therapies are known to exert beneficial effects on various types of cancers, including breast cancer. However, only a few reports are available on the role of incretin-based antidiabetic therapies in cancer as a whole and in breast cancer in particular. The present review sheds light on the potential of incretin based therapies on breast cancer and explores the plausible underlying mechanisms. Additionally, we have also discussed the sub types of breast cancer as well as the intricate relationship between diabetes and breast cancer.


Sign in / Sign up

Export Citation Format

Share Document