scholarly journals Non-invasive hydrodynamic imaging in plant roots at cellular resolution

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Flavius C. Pascut ◽  
Valentin Couvreur ◽  
Daniela Dietrich ◽  
Nicky Leftley ◽  
Guilhem Reyt ◽  
...  

AbstractA key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelling, can achieve this goal - monitoring hydrodynamics within living root tissues at cell- and sub-second-scale resolutions. Raman imaging of water-transporting xylem vessels in Arabidopsis thaliana mutant roots reveals faster xylem water transport in endodermal diffusion barrier mutants. Furthermore, transverse line scans across the root suggest water transported via the root xylem does not re-enter outer root tissues nor the surrounding soil when en-route to shoot tissues if endodermal diffusion barriers are intact, thereby separating ‘two water worlds’.

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1510
Author(s):  
Emanuele Capra ◽  
Anna Lange-Consiglio

Secretory extracellular vesicles (EVs) are membrane-enclosed microparticles that mediate cell to cell communication in proximity to, or distant from, the cell of origin. Cells release a heterogeneous spectrum of EVs depending on their physiologic and metabolic state. Extracellular vesicles are generally classified as either exosomes or microvesicles depending on their size and biogenesis. Extracellular vesicles mediate temporal and spatial interaction during many events in sexual reproduction and supporting embryo-maternal dialogue. Although many omic technologies provide detailed understanding of the molecular cargo of EVs, the difficulty in obtaining populations of homogeneous EVs makes difficult to interpret the molecular profile of the molecules derived from a miscellaneous EV population. Notwithstanding, molecular characterization of EVs isolated in physiological and pathological conditions may increase our understanding of reproductive and obstetric diseases and assist the search for potential non-invasive biomarkers. Moreover, a more precise vision of the cocktail of biomolecules inside the EVs mediating communication between the embryo and mother could provide new insights to optimize the therapeutic action and safety of EV use.


2017 ◽  
Vol 14 (127) ◽  
pp. 20160872
Author(s):  
Benjamin J. Zhang ◽  
Maysamreza Chamanzar ◽  
Mohammad-Reza Alam

Here we show that brain seizures can be effectively suppressed through random modulation of the brain medium. We use an established mesoscale cortical model in the form of a system of coupled stochastic partial differential equations. We show that by temporal and spatial randomization of parameters governing the firing rates of the excitatory and inhibitory neuron populations, seizure waves can be significantly suppressed. We find that the attenuation is the most effective when applied to the mean threshold potential. The proposed technique can serve as a non-invasive paradigm to mitigate epileptic seizures without knowing the location of the epileptic foci.


Plant Methods ◽  
2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Pflugfelder ◽  
Ralf Metzner ◽  
Dagmar van Dusschoten ◽  
Rüdiger Reichel ◽  
Siegfried Jahnke ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yunzhe Liu ◽  
Raymond J Dolan ◽  
Cameron Higgins ◽  
Hector Penagos ◽  
Mark W Woolrich ◽  
...  

There are rich structures in off-task neural activity which are hypothesised to reflect fundamental computations across a broad spectrum of cognitive functions. Here, we develop an analysis toolkit – Temporal Delayed Linear Modelling (TDLM) for analysing such activity. TDLM is a domain-general method for finding neural sequences that respect a pre-specified transition graph. It combines nonlinear classification and linear temporal modelling to test for statistical regularities in sequences of task-related reactivations. TDLM is developed on the non-invasive neuroimaging data and is designed to take care of confounds and maximize sequence detection ability. Notably, as a linear framework, TDLM can be easily extended, without loss of generality, to capture rodent replay in electrophysiology, including in continuous spaces, as well as addressing second-order inference questions, e.g., its temporal and spatial varying pattern. We hope TDLM will advance a deeper understanding of neural computation and promote a richer convergence between animal and human neuroscience.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ilenia Meloni ◽  
Divya Sachidanandan ◽  
Andreas S. Thum ◽  
Robert J. Kittel ◽  
Caroline Murawski

Abstract Invertebrates such as Drosophila melanogaster have proven to be a valuable model organism for studies of the nervous system. In order to control neuronal activity, optogenetics has evolved as a powerful technique enabling non-invasive stimulation using light. This requires light sources that can deliver patterns of light with high temporal and spatial precision. Currently employed light sources for stimulation of small invertebrates, however, are either limited in spatial resolution or require sophisticated and bulky equipment. In this work, we used smartphone displays for optogenetic control of Drosophila melanogaster. We developed an open-source smartphone app that allows time-dependent display of light patterns and used this to activate and inhibit different neuronal populations in both larvae and adult flies. Characteristic behavioural responses were observed depending on the displayed colour and brightness and in agreement with the activation spectra and light sensitivity of the used channelrhodopsins. By displaying patterns of light, we constrained larval movement and were able to guide larvae on the display. Our method serves as a low-cost high-resolution testbench for optogenetic experiments using small invertebrate species and is particularly appealing to application in neuroscience teaching labs.


1982 ◽  
pp. 37-51 ◽  
Author(s):  
Björn Kjerfve ◽  
J.A. Proehl ◽  
F.B. Schwing ◽  
H.E. Seim ◽  
M. Marozas

Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 238
Author(s):  
Clayton Kranawetter ◽  
Shuai Zeng ◽  
Trupti Joshi ◽  
Lloyd W. Sumner

Plant roots are composed of many differentiated tissue types, with each tissue exhibiting differential quantitative and qualitative accumulation of metabolites. The large-scale nontargeted metabolite profiles of these differentiated tissues are complex, which complicates the interpretation and development of hypotheses relative to the biological roles of differentially localized metabolites. Thus, we created a data visualization tool to aid in the visualization and understanding of differential metabolite accumulations in Medicago truncatula roots. This was achieved through the development of the Medicago truncatula Metabolite Atlas based upon an adaptation of the Arabidopsis Electronic Fluorescent Pictograph (eFP) Browser. Medicago truncatula roots were dissected into border cells, root cap, elongation zone, mature root, and root secretions. Each tissue was then analyzed by UHPLC-QTOF-MS and GC-Q-MS. Data were uploaded into a MySQL database and displayed in the Medicago truncatula Metabolite Atlas. The data revealed unique differential spatial localization of many metabolites, some of which are discussed here. Ultimately, the Medicago truncatula Metabolite Atlas compiles metabolite data into a singular, useful, and publicly available web-based tool that enables the visualization and understanding of differential metabolite accumulation and spatial localization.


2020 ◽  
Author(s):  
Mohsen Zarebanadkouki ◽  
Pavel Trtik ◽  
Faisal Hayat ◽  
Andrea Carminati ◽  
Anders Kaestner

<p>The pathways of water across root tissues and their relative contribution to plant water uptake remain debated. This is mainly due to technical challenges in measuring water flux non-invasively at the cellular scale under realistic conditions.  We developed a new method to quantify water fluxes inside roots growing in soils. The method combines spatiotemporal quantification of deuterated water distribution imaged by rapid neutron tomography with an inverse simulation of water transport across root tissues. Using this non-invasive technique, we estimated for the first time the in-situ radial water fluxes [m s<sup>-1</sup>] in apoplastic and cell-to-cell pathways. The water flux in the apoplast of twelve days-old lupins (Lupinus albus L. cv. Feodora) was seventeen times faster than in the cell-to-cell pathway. Hence, the overall contribution of the apoplast in water flow [m<sup>3</sup> s<sup>-1</sup>] across the cortex is, despite its small volume of 5%, as large as 57±8 % (Mean ± SD for n=3) of the total water flow. This method is suitable to non-invasively measure the response of cellular scale root hydraulics and water fluxes to varying soil and climate conditions.</p>


2020 ◽  
Vol 12 ◽  
pp. 559-570
Author(s):  
KE Jónsdóttir ◽  
Z Volent ◽  
JA Alfredsen

Shielding skirts are widely used as a non-invasive preventive measure against salmon lice Lepeophtheirus salmonis infestations on Atlantic salmon Salmo salar in sea-cages. Low levels of dissolved oxygen (DO) are reported from some sites, but not others. This disparity is usually explained by local variations in current flow and hydrography. The aim of the present study was to investigate these local variations through vertical mapping of DO and hydrography at 2 hydrographically different sites equipped with shielding skirts. The 2 sites chosen, Fornes and Soløya, are in northern Norway and are equipped with a permeable and a non-permeable skirt, respectively. Over a period of 3 d, current speed and direction were recorded outside the cage, while DO and hydrography were measured both inside and outside the cage, above and below the skirt. At Fornes, the DO inside the cage varied throughout the study period, while DO outside remained stable. The variation in DO inside the cage co-occurred with variations in strength and depth of a present pycnocline that broke down during the study period. At Soløya, DO levels were high throughout the study, and there was no gradient in salinity, temperature or density, indicating good vertical mixing. These data illustrate how the interaction between skirts and local conditions can influence the temporal and spatial variations of DO inside shielded cages and highlight the importance of studying local current conditions and hydrography when applying shielding skirts.


Sign in / Sign up

Export Citation Format

Share Document