scholarly journals C. elegans feed yolk to their young in a form of primitive lactation

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carina C. Kern ◽  
StJohn Townsend ◽  
Antoine Salzmann ◽  
Nigel B. Rendell ◽  
Graham W. Taylor ◽  
...  

AbstractThe nematode Caenorhabditis elegans exhibits rapid senescence that is promoted by the insulin/IGF-1 signalling (IIS) pathway via regulated processes that are poorly understood. IIS also promotes production of yolk for egg provisioning, which in post-reproductive animals continues in an apparently futile fashion, supported by destructive repurposing of intestinal biomass that contributes to senescence. Here we show that post-reproductive mothers vent yolk which can be consumed by larvae and promotes their growth. This implies that later yolk production is not futile; instead vented yolk functions similarly to milk. Moreover, yolk venting is promoted by IIS. These findings suggest that a self-destructive, lactation-like process effects resource transfer from postreproductive C. elegans mothers to offspring, in a fashion reminiscent of semelparous organisms that reproduce in a single, suicidal burst. That this process is promoted by IIS provides insights into how and why IIS shortens lifespan in C. elegans.

2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2021 ◽  
Vol 13 ◽  
Author(s):  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Mihiri Munasinghe ◽  
Markandeya Jois

Background: The antidepressant mianserin has been shown to extend the lifespan of Caenorhabditis elegans (C. elegans), a well-established model organism used in aging research. The extension of lifespan in C. elegans was shown to be dependent on increased expression of the scaffolding protein (ANK3/unc-44). In contrast, antidepressant use in humans is associated with an increased risk of death. The C. elegans in the laboratory are fed Escherichia coli (E. coli), a diet high in protein and low in carbohydrate, whereas a typical human diet is high in carbohydrates. We hypothesized that dietary carbohydrates might mitigate the lifespan-extension effect of mianserin. Objective: To investigate the effect of glucose added to the diet of C. elegans on the lifespan-extension effect of mianserin. Methods: Wild-type Bristol N2 and ANK3/unc-44 inactivating mutants were cultured on agar plates containing nematode growth medium and fed E. coli. Treatment groups included (C) control, (M50) 50 μM mianserin, (G) 73 mM glucose, and (M50G) 50 μM mianserin and 73 mM glucose. Lifespan was determined by monitoring the worms until they died. Statistical analysis was performed using the Kaplan-Meier version of the log-rank test. Results: Mianserin treatment resulted in a 12% increase in lifespan (P<0.05) of wild-type Bristol N2 worms but reduced lifespan by 6% in ANK3/unc-44 mutants, consistent with previous research. The addition of glucose to the diet reduced the lifespan of both strains of worms and abolished the lifespan-extension by mianserin. Conclusion: The addition of glucose to the diet of C. elegans abolishes the lifespan-extension effects of mianserin.


2008 ◽  
Vol 19 (5) ◽  
pp. 2154-2168 ◽  
Author(s):  
Corey L. Williams ◽  
Marlene E. Winkelbauer ◽  
Jenny C. Schafer ◽  
Edward J. Michaud ◽  
Bradley K. Yoder

Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and Joubert syndrome (JBTS) are a group of heterogeneous cystic kidney disorders with partially overlapping loci. Many of the proteins associated with these diseases interact and localize to cilia and/or basal bodies. One of these proteins is MKS1, which is disrupted in some MKS patients and contains a B9 motif of unknown function that is found in two other mammalian proteins, B9D2 and B9D1. Caenorhabditis elegans also has three B9 proteins: XBX-7 (MKS1), TZA-1 (B9D2), and TZA-2 (B9D1). Herein, we report that the C. elegans B9 proteins form a complex that localizes to the base of cilia. Mutations in the B9 genes do not overtly affect cilia formation unless they are in combination with a mutation in nph-1 or nph-4, the homologues of human genes (NPHP1 and NPHP4, respectively) that are mutated in some NPHP patients. Our data indicate that the B9 proteins function redundantly with the nephrocystins to regulate the formation and/or maintenance of cilia and dendrites in the amphid and phasmid ciliated sensory neurons. Together, these data suggest that the human homologues of the novel B9 genes B9D2 and B9D1 will be strong candidate loci for pathologies in human MKS, NPHP, and JBTS.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 571-580 ◽  
Author(s):  
William B Raich ◽  
Celine Moorman ◽  
Clay O Lacefield ◽  
Jonah Lehrer ◽  
Dusan Bartsch ◽  
...  

Abstract The pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1. We found these genes to be widely expressed and to localize to distinct subcellular compartments. We isolated deletion alleles in all three genes and show that loss of mbk-1, the gene most closely related to DYRK1A, causes no obvious defects, while another gene, mbk-2, is essential for viability. The overexpression of DYRK1A in Down syndrome led us to examine the effects of overexpression of its C. elegans ortholog mbk-1. We found that animals containing additional copies of the mbk-1 gene display behavioral defects in chemotaxis toward volatile chemoattractants and that the extent of these defects correlates with mbk-1 gene dosage. Using tissue-specific and inducible promoters, we show that additional copies of mbk-1 can impair olfaction cell-autonomously in mature, fully differentiated neurons and that this impairment is reversible. Our results suggest that increased gene dosage of human DYRK1A in trisomy 21 may disrupt the function of fully differentiated neurons and that this disruption is reversible.


Genetics ◽  
1988 ◽  
Vol 120 (4) ◽  
pp. 977-986
Author(s):  
K J Kemphues ◽  
M Kusch ◽  
N Wolf

Abstract We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F1 progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pablo E. Layana Castro ◽  
Joan Carles Puchalt ◽  
Antonio-José Sánchez-Salmerón

AbstractOne of the main problems when monitoring Caenorhabditis elegans nematodes (C. elegans) is tracking their poses by automatic computer vision systems. This is a challenge given the marked flexibility that their bodies present and the different poses that can be performed during their behaviour individually, which become even more complicated when worms aggregate with others while moving. This work proposes a simple solution by combining some computer vision techniques to help to determine certain worm poses and to identify each one during aggregation or in coiled shapes. This new method is based on the distance transformation function to obtain better worm skeletons. Experiments were performed with 205 plates, each with 10, 15, 30, 60 or 100 worms, which totals 100,000 worm poses approximately. A comparison of the proposed method was made to a classic skeletonisation method to find that 2196 problematic poses had improved by between 22% and 1% on average in the pose predictions of each worm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica Knox ◽  
Nicolas Joly ◽  
Edmond M. Linossi ◽  
José A. Carmona-Negrón ◽  
Natalia Jura ◽  
...  

AbstractOver one billion people are currently infected with a parasitic nematode. Symptoms can include anemia, malnutrition, developmental delay, and in severe cases, death. Resistance is emerging to the anthelmintics currently used to treat nematode infection, prompting the need to develop new anthelmintics. Towards this end, we identified a set of kinases that may be targeted in a nematode-selective manner. We first screened 2040 inhibitors of vertebrate kinases for those that impair the model nematode Caenorhabditis elegans. By determining whether the terminal phenotype induced by each kinase inhibitor matched that of the predicted target mutant in C. elegans, we identified 17 druggable nematode kinase targets. Of these, we found that nematode EGFR, MEK1, and PLK1 kinases have diverged from vertebrates within their drug-binding pocket. For each of these targets, we identified small molecule scaffolds that may be further modified to develop nematode-selective inhibitors. Nematode EGFR, MEK1, and PLK1 therefore represent key targets for the development of new anthelmintic medicines.


2021 ◽  
Vol 413 (8) ◽  
pp. 2091-2102
Author(s):  
Michael Witting ◽  
Ulrike Schmidt ◽  
Hans-Joachim Knölker

AbstractLipid identification is one of the current bottlenecks in lipidomics and lipid profiling, especially for novel lipid classes, and requires multidimensional data for correct annotation. We used the combination of chromatographic and ion mobility separation together with data-independent acquisition (DIA) of tandem mass spectrometric data for the analysis of lipids in the biomedical model organism Caenorhabditis elegans. C. elegans reacts to harsh environmental conditions by interrupting its normal life cycle and entering an alternative developmental stage called dauer stage. Dauer larvae show distinct changes in metabolism and morphology to survive unfavorable environmental conditions and are able to survive for a long time without feeding. Only at this developmental stage, dauer larvae produce a specific class of glycolipids called maradolipids. We performed an analysis of maradolipids using ultrahigh performance liquid chromatography-ion mobility spectrometry-quadrupole-time of flight-mass spectrometry (UHPLC-IM-Q-ToFMS) using drift tube ion mobility to showcase how the integration of retention times, collisional cross sections, and DIA fragmentation data can be used for lipid identification. The obtained results show that combination of UHPLC and IM separation together with DIA represents a valuable tool for initial lipid identification. Using this analytical tool, a total of 45 marado- and lysomaradolipids have been putatively identified and 10 confirmed by authentic standards directly from C. elegans dauer larvae lipid extracts without the further need for further purification of glycolipids. Furthermore, we putatively identified two isomers of a lysomaradolipid not known so far. Graphical abstract


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Andrew Singson ◽  
Katherine L Hill ◽  
Steven W L’Hernault

Abstract Hermaphrodite self-fertilization is the primary mode of reproduction in the nematode Caenorhabditis elegans. However, when a hermaphrodite is crossed with a male, nearly all of the oocytes are fertilized by male-derived sperm. This sperm precedence during reproduction is due to the competitive superiority of male-derived sperm and results in a functional suppression of hermaphrodite self-fertility. In this study, mutant males that inseminate fertilization-defective sperm were used to reveal that sperm competition within a hermaphrodite does not require successful fertilization. However, sperm competition does require normal sperm motility. Additionally, sperm competition is not an absolute process because oocytes not fertilized by male-derived sperm can sometimes be fertilized by hermaphrodite-derived sperm. These results indicate that outcrossed progeny result from a wild-type cross because male-derived sperm are competitively superior and hermaphrodite-derived sperm become unavailable to oocytes. The sperm competition assays described in this study will be useful in further classifying the large number of currently identified mutations that alter sperm function and development in C. elegans.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 185-206 ◽  
Author(s):  
Rebecca M Terns ◽  
Peggy Kroll-Conner ◽  
Jiangwen Zhu ◽  
Sooyoun Chung ◽  
Joel H Rothman

To identify genomic regions required for establishment and patterning of the epidermis, we screened 58 deficiencies that collectively delete at least ∼67% of the Caenorhabditis elegans genome. The epidermal pattern of deficiency homozygous embryos was analyzed by examining expression of a marker specific for one of the three major epidermal cell types, the seam cells. The organization of the epidermis and internal organs was also analyzed using a monoclonal antibody specific for epithelial adherens junctions. While seven deficiencies had no apparent effect on seam cell production, 21 were found to result in subnormal, and five in excess numbers of these cells. An additional 23 deficiencies blocked expression of the seam cell marker, in some cases without preventing cell proliferation. Two deficiencies result in multinucleate seam cells. Deficiencies were also identified that result in subnormal numbers of epidermal cells, hyperfusion of epidermal cells into a large syncytium, or aberrant epidermal differentiation. Finally, analysis of internal epithelia revealed deficiencies that cause defects in formation of internal organs, including circularization of the intestine and bifurcation of the pharynx lumen. This study reveals that many regions of the C. elegans genome are required zygotically for patterning of the epidermis and other epithelia.


Sign in / Sign up

Export Citation Format

Share Document