scholarly journals Disulfide-compatible phage-assisted continuous evolution in the periplasmic space

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary S. Morrison ◽  
Tina Wang ◽  
Aditya Raguram ◽  
Colin Hemez ◽  
David R. Liu

AbstractThe directed evolution of antibodies has yielded important research tools and human therapeutics. The dependence of many antibodies on disulfide bonds for stability has limited the application of continuous evolution technologies to antibodies and other disulfide-containing proteins. Here we describe periplasmic phage-assisted continuous evolution (pPACE), a system for continuous evolution of protein-protein interactions in the disulfide-compatible environment of the E. coli periplasm. We first apply pPACE to rapidly evolve novel noncovalent and covalent interactions between subunits of homodimeric YibK protein and to correct a binding-defective mutant of the anti-GCN4 Ω-graft antibody. We develop an intein-mediated system to select for soluble periplasmic expression in pPACE, leading to an eight-fold increase in soluble expression of the Ω-graft antibody. Finally, we evolve disulfide-containing trastuzumab antibody variants with improved binding to a Her2-like peptide and improved soluble expression. Together, these results demonstrate that pPACE can rapidly optimize proteins containing disulfide bonds, broadening the applicability of continuous evolution.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea Bogutzki ◽  
Natalie Naue ◽  
Lidia Litz ◽  
Andreas Pich ◽  
Ute Curth

Abstract During DNA replication in E. coli, a switch between DnaG primase and DNA polymerase III holoenzyme (pol III) activities has to occur every time when the synthesis of a new Okazaki fragment starts. As both primase and the χ subunit of pol III interact with the highly conserved C-terminus of single-stranded DNA-binding protein (SSB), it had been proposed that the binding of both proteins to SSB is mutually exclusive. Using a replication system containing the origin of replication of the single-stranded DNA phage G4 (G4ori) saturated with SSB, we tested whether DnaG and pol III can bind concurrently to the primed template. We found that the addition of pol III does not lead to a displacement of primase, but to the formation of higher complexes. Even pol III-mediated primer elongation by one or several DNA nucleotides does not result in the dissociation of DnaG. About 10 nucleotides have to be added in order to displace one of the two primase molecules bound to SSB-saturated G4ori. The concurrent binding of primase and pol III is highly plausible, since even the SSB tetramer situated directly next to the 3′-terminus of the primer provides four C-termini for protein-protein interactions.


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
Shomeek Chowdhury ◽  
Stephen Hepper ◽  
Mudassir K. Lodi ◽  
Milton H. Saier ◽  
Peter Uetz

Glycolysis is regulated by numerous mechanisms including allosteric regulation, post-translational modification or protein-protein interactions (PPI). While glycolytic enzymes have been found to interact with hundreds of proteins, the impact of only some of these PPIs on glycolysis is well understood. Here we investigate which of these interactions may affect glycolysis in E. coli and possibly across numerous other bacteria, based on the stoichiometry of interacting protein pairs (from proteomic studies) and their conservation across bacteria. We present a list of 339 protein-protein interactions involving glycolytic enzymes but predict that ~70% of glycolytic interactors are not present in adequate amounts to have a significant impact on glycolysis. Finally, we identify a conserved but uncharacterized subset of interactions that are likely to affect glycolysis and deserve further study.


2008 ◽  
Vol 190 (18) ◽  
pp. 6048-6059 ◽  
Author(s):  
Carine Robichon ◽  
Glenn F. King ◽  
Nathan W. Goehring ◽  
Jon Beckwith

ABSTRACT Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.


2000 ◽  
Vol 279 (3) ◽  
pp. C860-C867 ◽  
Author(s):  
Kevin Strange ◽  
Thomas D. Singer ◽  
Rebecca Morrison ◽  
Eric Delpire

K-Cl cotransporters (KCC) play fundamental roles in ionic and osmotic homeostasis. To date, four mammalian KCC genes have been identified. KCC2 is expressed exclusively in neurons. Injection of Xenopus oocytes with KCC2 cRNA induced a 20-fold increase in Cl−-dependent, furosemide-sensitive K+ uptake. Oocyte swelling increased KCC2 activity 2–3 fold. A canonical tyrosine phosphorylation site is located in the carboxy termini of KCC2 (R1081–Y1087) and KCC4, but not in other KCC isoforms. Pharmacological studies, however, revealed no regulatory role for phosphorylation of KCC2 tyrosine residues. Replacement of Y1087 with aspartate or arginine dramatically reduced K+ uptake under isotonic and hypotonic conditions. Normal or near-normal cotransporter activity was observed when Y1087 was mutated to phenylalanine, alanine, or isoleucine. A tyrosine residue equivalent to Y1087 is conserved in all identified KCCs from nematodes to humans. Mutation of the Y1087 congener in KCC1 to aspartate also dramatically inhibited cotransporter activity. Taken together, these results suggest that replacement of Y1087 and its congeners with charged residues disrupts the conformational state of the carboxy terminus. We postulate that the carboxy terminus plays an essential role in maintaining the functional conformation of KCC cotransporters and/or is involved in essential regulatory protein-protein interactions.


2019 ◽  
Vol 476 (1) ◽  
pp. 67-83 ◽  
Author(s):  
Dipankar Chaudhuri ◽  
Teshome Aboye ◽  
Julio A. Camarero

Abstract The use of disulfide-rich backbone-cyclized polypeptides, as molecular scaffolds to design a new generation of bioimaging tools and drugs that are potent and specific, and thus might have fewer side effects than traditional small-molecule drugs, is gaining increasing interest among the scientific and in the pharmaceutical industries. Highly constrained macrocyclic polypeptides are exceptionally more stable to chemical, thermal and biological degradation and show better biological activity when compared with their linear counterparts. Many of these relatively new scaffolds have been also found to be highly tolerant to sequence variability, aside from the conserved residues forming the disulfide bonds, able to cross cellular membranes and modulate intracellular protein–protein interactions both in vitro and in vivo. These properties make them ideal tools for many biotechnological applications. The present study provides an overview of the new developments on the use of several disulfide-rich backbone-cyclized polypeptides, including cyclotides, θ-defensins and sunflower trypsin inhibitor peptides, in the development of novel bioimaging reagents and therapeutic leads.


2013 ◽  
Vol 450 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Mélanie Rouleau ◽  
Pierre Collin ◽  
Judith Bellemare ◽  
Mario Harvey ◽  
Chantal Guillemette

The oligomerization of UGTs [UDP (uridine diphosphate)-glucuronosyltransferases] modulates their enzyme activities. Recent findings also indicate that glucuronidation is negatively regulated by the formation of inactive oligomeric complexes between UGT1A enzymes [i1 (isoform 1)] and an enzymatically inactive alternatively spliced i2 (isoform 2). In the present paper, we assessed whether deletion of the UGT-interacting domains previously reported to be critical for enzyme function might be involved in i1–i2 interactions. The bilirubin-conjugating UGT1A1 was used as a prototype. We also explored whether intermolecular disulfide bonds are involved in i1–i2 interactions and the potential role of selected cysteine residues. Co-immunoprecipitation assays showed that UGT1A1 lacking the SP (signal peptide) alone or also lacking the transmembrane domain (absent from i2) did not self-interact, but still interacted with i2. The deletion of other N- or C-terminal domains did not compromise i1–i2 complex formation. Under non-reducing conditions, we also observed formation of HMWCs (high-molecular-mass complexes) for cells overexpressing i1 and i2. The presence of UGTs in these complexes was confirmed by MS. Mutation of individual cysteine residues throughout UGT1A1 did not compromise i1–i1 or i1–i2 complex formation. These findings are compatible with the hypothesis that the interaction between i1 and i2 proteins (either transient or stable) involves binding of more than one domain that probably differs from those involved in i1–i1 interactions.


2020 ◽  
Author(s):  
Michael Burkart ◽  
Thomas Bartholow ◽  
Terra Sztain ◽  
Ashay Patel ◽  
D Lee ◽  
...  

Abstract Fatty acid biosynthesis (FAB) is an essential and highly conserved metabolic pathway. In bacteria, this process is mediated by an elaborate network of protein•protein interactions (PPIs) involving a small, dynamic acyl carrier protein that interacts with dozens of other partner proteins (PPs). These PPIs have remained poorly characterized due to their dynamic and transient nature. Using a combination of solution-phase NMR spectroscopy and protein-protein docking simulations, we report a comprehensive residue-by-residue comparison of the PPIs formed during FAB in Escherichia coli. This work reveals the molecular basis of six discrete binding events responsible for E. coli FAB and offers insights into a method to characterize these events and those in related carrier protein-dependent pathways. ONE SENTENCE SUMMARY: Through a combination of structural and computational analysis, a comparative evaluation of protein-protein interactions in de novo fatty acid biosynthesis in E. coli is performed.


Author(s):  
Sven H. Giese ◽  
Ludwig R. Sinn ◽  
Fritz Wegner ◽  
Juri Rappsilber

AbstractCrosslinking mass spectrometry (Crosslinking MS) has developed into a robust technique that is increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and noisy information in the spectra limits the numbers of protein-protein interactions (PPIs) that can be confidently identified. Here, we successfully leveraged chromatographic retention time (RT) information to aid the identification of crosslinked peptides from spectra. Our Siamese machine learning model xiRT achieved highly accurate RT predictions of crosslinked peptides in a multi-dimensional separation of crosslinked E. coli lysate. We combined strong cation exchange (SCX), hydrophilic strong anion exchange (hSAX) and reversed-phase (RP) chromatography and reached R2 0.94 in RP and a margin of error of 1 fraction for hSAX in 94%, and SCX in 85% of the predictions. Importantly, supplementing the search engine score with retention time features led to a 1.4-fold increase in PPIs at a 1% false discovery rate. We also demonstrate the value of this approach for the more routine analysis of a crosslinked multiprotein complexes. An increase of 1.7-fold in heteromeric crosslinked residue-pairs was achieved at 1% residue-pair FDR for Fanconi anaemia monoubiquitin ligase complex, solely using reversed-phase RT. Retention times are a powerful complement to mass spectrometric information to increase the sensitivity of Crosslinking MS analyses.


Sign in / Sign up

Export Citation Format

Share Document