scholarly journals How to build a ribosome from RNA fragments in Chlamydomonas mitochondria

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Florent Waltz ◽  
Thalia Salinas-Giegé ◽  
Robert Englmeier ◽  
Herrade Meichel ◽  
Heddy Soufari ◽  
...  

AbstractMitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some of its specific components. Single particle cryo-electron microscopy resolves how the Chlamydomonas mitoribosome is assembled from 13 rRNA fragments encoded by separate non-contiguous gene pieces. Additional proteins, mainly OPR, PPR and mTERF helical repeat proteins, are found in Chlamydomonas mitoribosome, revealing the structure of an OPR protein in complex with its RNA binding partner. Targeted amiRNA silencing indicates that these ribosomal proteins are required for mitoribosome integrity. Finally, we use cryo-electron tomography to show that Chlamydomonas mitoribosomes are attached to the inner mitochondrial membrane via two contact points mediated by Chlamydomonas-specific proteins. Our study expands our understanding of mitoribosome diversity and the various strategies these specialized molecular machines adopt for membrane tethering.

2021 ◽  
Author(s):  
Florent WALTZ ◽  
Thalia Salinas-Giegé ◽  
Robert Englmeier ◽  
Herrade Meichel ◽  
Heddy Soufari ◽  
...  

Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some of its specific components. Single particle cryo-electron microscopy resolves how the Chlamydomonas mitoribosome is assembled from 13 rRNA fragments encoded by separate non-contiguous gene pieces. Novel proteins, mainly helical repeat proteins, including OPR, PPR and mTERF proteins are found in Chlamydomonas mitoribosome, revealing the first structure of an OPR protein in complex with its RNA target. Targeted amiRNA silencing indicated that the novel ribosomal proteins are required for mitoribosome integrity. Finally, we use cryo-electron tomography to show that Chlamydomonas mitoribosomes are attached to the mitochondrial inner membrane via two contact points mediated by Chlamydomonas-specific proteins. Our study expands our understanding of the mitoribosome diversity and the various strategies they adopt for membrane tethering.


2008 ◽  
Vol 8 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Kimberly Prohaska ◽  
Noreen Williams

ABSTRACT We previously identified two Trypanosoma brucei RNA binding proteins, P34 and P37, and determined that they are essential for proper ribosomal assembly in this organism. Loss of these proteins via RNA interference is lethal and causes a decrease in both 5S rRNA levels and formation of 80S ribosomes, concomitant with a decrease in total cellular protein synthesis. These data suggest that these proteins are involved at some point in the ribosomal biogenesis pathway. In the current study, we have performed subcellular fractionation in conjunction with immune capture experiments specific for 60S ribosomal proteins and accessory factors in order to determine when and where P34 and P37 are involved in the ribosomal biogenesis pathway. These studies demonstrate that P34 and P37 associate with the 60S ribosomal subunit at the stage of the nucleolar 90S particle and remain associated subsequent to nuclear export. In addition, P34 and P37 associate with conserved 60S ribosomal subunit nuclear export factors exportin 1 and Nmd3, suggesting that they are components of the 60S ribosomal subunit nuclear export complex in T. brucei. Most significantly, the pre-60S complex does not associate with exportin 1 or Nmd3 in the absence of P34 and P37. These results demonstrate that, although T. brucei 60S ribosomal subunits utilize a nuclear export complex similar to that described for other organisms, trypanosome-specific factors are essential to the process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arangasamy Yazhini ◽  
Narayanaswamy Srinivasan ◽  
Sankaran Sandhya

AbstractAfrotheria is a clade of African-origin species with striking dissimilarities in appearance and habitat. In this study, we compared whole proteome sequences of six Afrotherian species to obtain a broad viewpoint of their underlying molecular make-up, to recognize potentially unique proteomic signatures. We find that 62% of the proteomes studied here, predominantly involved in metabolism, are orthologous, while the number of homologous proteins between individual species is as high as 99.5%. Further, we find that among Afrotheria, L. africana has several orphan proteins with 112 proteins showing < 30% sequence identity with their homologues. Rigorous sequence searches and complementary approaches were employed to annotate 156 uncharacterized protein sequences and 28 species-specific proteins. For 122 proteins we predicted potential functional roles, 43 of which we associated with protein- and nucleic-acid binding roles. Further, we analysed domain content and variations in their combinations within Afrotheria and identified 141 unique functional domain architectures, highlighting proteins with potential for specialized functions. Finally, we discuss the potential relevance of highly represented protein families such as MAGE-B2, olfactory receptor and ribosomal proteins in L. africana and E. edwardii, respectively. Taken together, our study reports the first comparative study of the Afrotherian proteomes and highlights salient molecular features.


1999 ◽  
Vol 27 (2) ◽  
pp. 381-388 ◽  
Author(s):  
D. E. Draper ◽  
L. P. Reynaldo

2020 ◽  
Author(s):  
Čunátová Kristýna ◽  
Pajuelo Reguera David ◽  
Vrbacký Marek ◽  
Fernández-Vizarra Erika ◽  
Ding Shujing ◽  
...  

ABSTRACTOxidative phosphorylation (OXPHOS) system localized in the inner mitochondrial membrane secures production of the majority of ATP in mammalian organisms. Individual OXPHOS complexes were shown to form supramolecular assemblies termed supercomplexes. It has been repeatedly shown that complexes are not linked only by their function but also by interdependence of individual complex biogenesis or maintenance. For instance, cytochrome c oxidase (cIV, COX) or cytochrome bc1 complex (cIII) deficiencies affect the level of fully assembled NADH dehydrogenase (cI) in monomer as well as within supercomplexes. It was hypothesized that cI is affected at the level of enzyme assembly as well as at the level of cI stability and maintenance. However, the true nature of interdependency between cI and cIV is not fully understood yet. We used HEK293 cellular model with complete knockout of COX4 subunit, which serves as an ideal system to study interdependency of cI and cIV, as early phases of cIV assembly process are disrupted. Total absence of cIV was accompanied by profound deficiency of cI, documented by selective decrease in cI subunits amount and significantly reduced amount of assembled cI. Supercomplexes assembled from cI, cIII and cIV were missing in COX4dKO due to loss of cIV and decrease in cI amount. Pulse-chase metabolic labelling of mtDNA-encoded proteins uncovered decrease of cIV and cI subunits translation. Moreover, partial impairment of mitochondrial proteosynthesis correlated with decreased level of mitochondrial ribosomal proteins. In addition, complexome profiling approach uncovered accumulation of cI assembly intermediates indicating that cI biogenesis was affected rather than stability. We propose that impairment of mitochondrial proteosynthesis caused by cIV deficiency represents one of the mechanisms which may couple biogenesis of cI and cIV.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jiyu Wang ◽  
Jie Zhou ◽  
Qidi Yang ◽  
Elizabeth J Grayhack

Reading frame maintenance is critical for accurate translation. We show that the conserved eukaryotic/archaeal protein Mbf1 acts with ribosomal proteins Rps3/uS3 and eukaryotic Asc1/RACK1 to prevent frameshifting at inhibitory CGA-CGA codon pairs in the yeast Saccharomyces cerevisiae. Mutations in RPS3 that allow frameshifting implicate eukaryotic conserved residues near the mRNA entry site. Mbf1 and Rps3 cooperate to maintain the reading frame of stalled ribosomes, while Asc1 also mediates distinct events that result in recruitment of the ribosome quality control complex and mRNA decay. Frameshifting occurs through a +1 shift with a CGA codon in the P site and involves competition between codons entering the A site, implying that the wobble interaction of the P site codon destabilizes translation elongation. Thus, eukaryotes have evolved unique mechanisms involving both a universally conserved ribosome component and two eukaryotic-specific proteins to maintain the reading frame at ribosome stalls.


2000 ◽  
Vol 81 (10) ◽  
pp. 2481-2484 ◽  
Author(s):  
Marcus Klein ◽  
Hans J. Eggers ◽  
Birgit Nelsen-Salz

Polypeptide 2C is essential for picornavirus replication. Although many data on multiple functions of this highly conserved protein are available, the mechanism of RNA binding is still obscure. In this work, protein 2C of echovirus-9 strain Barty was expressed as a histidine-tagged protein in E. coli followed by nondenaturing purification to homogeneity. After incubation of 2C protein with different kinds of RNA fragments, binding was shown in gel retardation assays. Competition experiments revealed that 2C targets linear RNA unspecifically; however, single-stranded linear DNA does not react with this protein. In contrast to poliovirus, protein 2C of echovirus-9 only recognizes RNA with a low content of secondary structures. This may be a first hint of a different binding specificity of 2C in echo- and polioviruses.


2020 ◽  
Vol 21 (3) ◽  
pp. 1151 ◽  
Author(s):  
Shannon E. Dougherty ◽  
Austin O. Maduka ◽  
Toshifumi Inada ◽  
Gustavo M. Silva

The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.


2020 ◽  
Vol 21 (4) ◽  
pp. 1254 ◽  
Author(s):  
Tomas Masek ◽  
Edgar del Llano ◽  
Lenka Gahurova ◽  
Michal Kubelka ◽  
Andrej Susor ◽  
...  

Meiotic maturation of oocyte relies on pre-synthesised maternal mRNA, the translation of which is highly coordinated in space and time. Here, we provide a detailed polysome profiling protocol that demonstrates a combination of the sucrose gradient ultracentrifugation in small SW55Ti tubes with the qRT-PCR-based quantification of 18S and 28S rRNAs in fractionated polysome profile. This newly optimised method, named Scarce Sample Polysome Profiling (SSP-profiling), is suitable for both scarce and conventional sample sizes and is compatible with downstream RNA-seq to identify polysome associated transcripts. Utilising SSP-profiling we have assayed the translatome of mouse oocytes at the onset of nuclear envelope breakdown (NEBD)—a developmental point, the study of which is important for furthering our understanding of the molecular mechanisms leading to oocyte aneuploidy. Our analyses identified 1847 transcripts with moderate to strong polysome occupancy, including abundantly represented mRNAs encoding mitochondrial and ribosomal proteins, proteasomal components, glycolytic and amino acids synthetic enzymes, proteins involved in cytoskeleton organization plus RNA-binding and translation initiation factors. In addition to transcripts encoding known players of meiotic progression, we also identified several mRNAs encoding proteins of unknown function. Polysome profiles generated using SSP-profiling were more than comparable to those developed using existing conventional approaches, being demonstrably superior in their resolution, reproducibility, versatility, speed of derivation and downstream protocol applicability.


2020 ◽  
Vol 48 (8) ◽  
pp. 4507-4520 ◽  
Author(s):  
Smriti Pandey ◽  
Chandra M Gravel ◽  
Oliver M Stockert ◽  
Clara D Wang ◽  
Courtney L Hegner ◽  
...  

Abstract The FinO-domain-protein ProQ is an RNA-binding protein that has been known to play a role in osmoregulation in proteobacteria. Recently, ProQ has been shown to act as a global RNA-binding protein in Salmonella and Escherichia coli, binding to dozens of small RNAs (sRNAs) and messenger RNAs (mRNAs) to regulate mRNA-expression levels through interactions with both 5′ and 3′ untranslated regions (UTRs). Despite excitement around ProQ as a novel global RNA-binding protein, and its potential to serve as a matchmaking RNA chaperone, significant gaps remain in our understanding of the molecular mechanisms ProQ uses to interact with RNA. In order to apply the tools of molecular genetics to this question, we have adapted a bacterial three-hybrid (B3H) assay to detect ProQ’s interactions with target RNAs. Using domain truncations, site-directed mutagenesis and an unbiased forward genetic screen, we have identified a group of highly conserved residues on ProQ’s NTD as the primary face for in vivo recognition of two RNAs, and propose that the NTD structure serves as an electrostatic scaffold to recognize the shape of an RNA duplex.


Sign in / Sign up

Export Citation Format

Share Document