scholarly journals Potential for future reductions of global GHG and air pollutants from circular waste management systems

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Adriana Gómez-Sanabria ◽  
Gregor Kiesewetter ◽  
Zbigniew Klimont ◽  
Wolfgang Schoepp ◽  
Helmut Haberl

AbstractThe rapidly rising generation of municipal solid waste jeopardizes the environment and contributes to climate heating. Based on the Shared Socioeconomic Pathways, we here develop a global systematic approach for evaluating the potentials to reduce emissions of greenhouse gases and air pollutants from the implementation of circular municipal waste management systems. We contrast two sets of global scenarios until 2050, namely baseline and mitigation scenarios, and show that mitigation strategies in the sustainability-oriented scenario yields earlier, and major, co-benefits compared to scenarios in which inequalities are reduced but that are focused solely on technical solutions. The sustainability-oriented scenario leaves 386 Tg CO2eq/yr of GHG (CH4 and CO2) to be released while air pollutants from open burning can be eliminated, indicating that this source of ambient air pollution can be entirely eradicated before 2050.

Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Hannah Kim ◽  
Seung-Ah Choe ◽  
Ok-Jin Kim ◽  
Sun-Young Kim ◽  
Seulgi Kim ◽  
...  

AbstractBackgroundMounting evidence implicates an association between ambient air pollution and impaired reproductive potential of human. Our study aimed to assess the association between air pollution and ovarian reserve in young, infertile women.MethodsOur study included 2276 Korean women who attended a single fertility center in 2016–2018. Women’s exposure to air pollution was assessed using concentrations of particulate matter (PM10and PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3) that had been collected at 269 air quality monitoring sites. Exposure estimates were computed for 1, 3, 6, and 12 months prior to the ovarian reserve tests. Anti-Müllerian hormone (AMH) ratio (defined as an observed-to-expected AMH based on age) and low AMH (defined as < 0.5 ng/mL) were employed as indicators of ovarian reserve. We included a clustering effect of 177 districts in generalized estimating equations approach. A secondary analysis was conducted restricting the analyses to Seoul residents to examine the association in highly urbanized setting.ResultsThe mean age was 36.6 ± 4.2 years and AMH level was 3.3 ± 3.1 ng/mL in the study population. Average AMH ratio was 0.8 ± 0.7 and low AMH was observed in 10.3% of women (n=235). The average concentration of six air pollutants was not different between the normal ovarian reserve and low AMH groups for all averaging periods. In multivariable models, an interquartile range (IQR)-increase in 1 month-average PM10was associated with decrease in AMH ratio among total population (β= −0.06, 95% confidence interval: −0.11, 0.00). When we restrict our analysis to those living in Seoul, IQR-increases in 1 and 12 month-average PM2.5were associated with 3% (95% CI: −0.07, 0.00) and 10% (95% CI: −0.18, −0.01) decrease in AMH ratio. The ORs per IQR increase in the six air pollutants were close to null in total population and Seoul residents.ConclusionsIn a cohort of infertile Korean women, there was a suggestive evidence of the negative association between ambient PM concentration and ovarian reserve, highlighting the potential adverse impact of air pollution on women’s fertility.


2021 ◽  
Author(s):  
Yaqi Liu ◽  
Yi Jiang ◽  
Manyi Wu ◽  
Sunghar Muheyat ◽  
Dongai Yao ◽  
...  

Abstract Background There are few studies focused on the correlations between ambient air pollution and abdominal pain, especially in emergency departments in China. Method: Daily data (from January 1, 2016 to December 31, 2018), including air pollution concentration (SO2, NO2, PM2.5, PM10, CO, and O3) and meteorological variables, for daily emergency room visits (ERVs) were collected in Wuhan, China. We conducted a time-series study to investigate the potential correlation between six ambient air pollutants and ERVs for abdominal pain and their effects, in different genders, ages and seasons. Results A total of 16,306 abdominal pain ERVs were identified during the study period. A 10-µg/m3 increase in concentration of SO2, NO2, PM2.5, PM10, CO, and O3 corresponded respectively to incremental increases in abdominal pain of 6.12% (95% confidence interval [CI]: -0.44-13.12), 1.65% (95%CI: -0.25-3.59), 1.12% (95%CI: -0.18-2.44), 0.38% (95%CI: -1.09-1.87), 9.87% (95%CI:3.14–17.05) and 1.11% (95%CI: 0.03–2.21). We observed significant correlations between CO and O3 and daily abdominal pain ERVs increase, and positive but insignificant correlations between the other pollutants and ERVs. The effects were stronger mainly for females (especially SO2 and O3) and younger people (especially CO and O3). The correlations of PM2.5 and PM10 were stronger in cool seasons, while the correlation of CO was stronger in warm seasons. Conclusion Our time-series study suggested that short-term exposure to air pollution (especially CO and O3) was positively correlated with ERVs for abdominal pain in Wuhan, China, and that their effects varied by season, gender and age. These data can add evidence on how air pollutants affect the human body, and may prompt hospitals to take specific precautions on polluted days and maintain order in emergency departments made busier due to the pollution.


Author(s):  
Lisha Luo ◽  
Yunquan Zhang ◽  
Junfeng Jiang ◽  
Hanghang Luan ◽  
Chuanhua Yu ◽  
...  

In this study, we estimated the short-term effects of ambient air pollution on respiratory disease hospitalization in Taiyuan, China. Daily data of respiratory disease hospitalization, daily concentration of ambient air pollutants and meteorological factors from 1 October 2014 to 30 September 2017 in Taiyuan were included in our study. We conducted a time-series study design and applied a generalized additive model to evaluate the association between every 10-μg/m3 increment of air pollutants and percent increase of respiratory disease hospitalization. A total of 127,565 respiratory disease hospitalization cases were included in this study during the present period. In single-pollutant models, the effect values in multi-day lags were greater than those in single-day lags. PM2.5 at lag02 days, SO2 at lag03 days, PM10 and NO2 at lag05 days were observed to be strongly and significantly associated with respiratory disease hospitalization. No significant association was found between O3 and respiratory disease hospitalization. SO2 and NO2 were still significantly associated with hospitalization after adjusting for PM2.5 or PM10 into two-pollutant models. Females and younger population for respiratory disease were more vulnerable to air pollution than males and older groups. Therefore, some effective measures should be taken to strengthen the management of the ambient air pollutants, especially SO2 and NO2, and to enhance the protection of the high-risk population from air pollutants, thereby reducing the burden of respiratory disease caused by ambient air pollution.


2018 ◽  
Vol 25 (8) ◽  
pp. 818-825 ◽  
Author(s):  
Simone Vidale ◽  
Carlo Campana

Air pollution has a great impact on health, representing one of the leading causes of death worldwide. Previous experimental and epidemiological studies suggested the role of pollutants as risk factors for cardiovascular diseases. For this reason, international guidelines included specific statements regarding the contribution of particulate matter exposure to increase the risk of these events. In this review, we summarise the main evidence concerning the mechanisms involved in the processes linking air pollutants to the development of cardiovascular diseases.


2020 ◽  
Vol 105 (8) ◽  
pp. e2912-e2920
Author(s):  
Hyun-Jin Kim ◽  
Hyuktae Kwon ◽  
Jae Moon Yun ◽  
Belong Cho ◽  
Jin-Ho Park

Abstract Context Although a significant relationship has been reported between air pollution and thyroid function in limited samples or regions, few studies have addressed this association in the general population. Objective Using a nationwide sample of Korean adults, we investigated the association between exposure to air pollution and thyroid function, and whether this association differed between subgroups stratified according to age or body mass index (BMI). Methods We included 4704 adults in the final analysis and used each person’s annual average exposure to 4 air pollutants, namely, particulate matter with an aerodynamic diameter less than or equal to 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide, and carbon monoxide (CO). We measured serum thyrotropin (TSH) and free thyroxine (FT4) concentrations as indicators of thyroid function according to age and BMI. Results The annual average exposure to NO2 and CO was significantly associated with an elevated TSH and reduced FT4 concentration after adjusting for possible confounding factors (all P &lt; .05). In men, in addition to these 2 pollutants, PM10 exposure was positively associated with TSH level (P = .03). Age-stratified analysis showed stronger effects of NO2 and CO exposure in older than in younger adults. Exposure to these air pollutants was related to serum TSH and FT4 concentrations in people with overweight or obesity but not in those of normal weight. Conclusions This study provides the first evidence that air pollution exposure is linked to thyroid function in the general population and that this association may be stronger in older or overweight or obese adults.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
You-Jung Choi ◽  
Sun-Hwa Kim ◽  
Si-Hyuck Kang ◽  
Sun-Young Kim ◽  
Ok-Jin Kim ◽  
...  

AbstractElevated blood pressure (BP) has been proposed as a possible pathophysiological mechanism linking exposure to ambient air pollution and the increased risk of cardiovascular mortality and morbidity. In this study, we investigated the hourly relationship between ambient air pollutants and BP. BP measurements were extracted from the electronic health record database of the Seoul National University Bundang Hospital from February 2015 to June 2017. A total of 98,577 individual BP measurements were matched to the hourly levels of air pollutants. A generalized additive model was constructed for hour lags of 0–8 of air pollutants adjusting for age, sex, meteorological variables, and time trend. Systolic BP was shown to be significantly lower at 2–4 hours and 3–5 hours after increased levels of SO2 and CO, respectively (0.24 mmHg and 0.26 mmHg for an interquartile range, respectively). In contrast, O3 and NO2 were associated with significantly increased systolic BP at 3–5 lag hours and at 0–2 lag hours, respectively. BP elevation in association with O3 and NO2 was shown to be significantly greater in hypertensive patients than normotensive subjects. Our findings suggest that short-term exposure to air pollution may be associated with elevated BP.


2019 ◽  
Vol 34 (2) ◽  
pp. 211-218
Author(s):  
Toluwanimi Mobolade Oni ◽  
Godson R.E.E. Ana

Abstract Background There is an increasing range of adverse health effects associated with air pollution at very low concentrations. Few studies have assessed respiratory parameters among filling station attendants. Objectives This study assessed air pollutants; particulate matter (PM10) and total volatile organic compounds (TVOC) concentrations at filling stations as well as determined forced expiratory volume in one second (FEV1) and peak expiratory flow rate (PEFR) levels among filling station attendants. Methods A cross-sectional study was conducted to assess PM10 and TVOC concentrations at 20 systematically selected filling stations in Ibadan North Local Government Area, Ibadan for 2 months using a Thermo Scientific pDR 1500 PM10 monitor and SF2000-TVOC meter. FEV1 and PEFR levels were measured in order to assess the effect of exposure to PM10 and TVOC on lung function of 100 filling station attendants using a PIKO-1 Electronic peakflow/FEV1 meter. Results Total mean PM10 concentrations (μg/m3) in the morning (43.7±16.5) and afternoon (27.8±7.9) were significantly lower (p<0.01) than the World Health Organization (WHO) guideline limit (50 μg/m3). Total mean TVOC concentrations (ppm) in the morning (12.0±3.4) and afternoon (5.6±2.4) were however significantly higher (p<0.01) than the Occupational Safety and Health Administration (OSHA) guideline limit (3 ppm). Mean FEV1 for filling station attendants was 1.63±0.39 and PEFR was 171.7±45.9. Conclusion Filling stations are hotspots for the emission of VOCs and PM10. However, filling station attendants in this study are at risk of exposure to high concentrations of VOCs but not PM10. FEV1 and PEFR values among filling station attendants were very low which could possibly be attributed to extended exposure to air pollutants. Regular medical examinations should also be conducted on filling station attendants in order to aid early detection of deviations in their health status.


Sign in / Sign up

Export Citation Format

Share Document