Ambient air pollution and cardiovascular diseases: From bench to bedside

2018 ◽  
Vol 25 (8) ◽  
pp. 818-825 ◽  
Author(s):  
Simone Vidale ◽  
Carlo Campana

Air pollution has a great impact on health, representing one of the leading causes of death worldwide. Previous experimental and epidemiological studies suggested the role of pollutants as risk factors for cardiovascular diseases. For this reason, international guidelines included specific statements regarding the contribution of particulate matter exposure to increase the risk of these events. In this review, we summarise the main evidence concerning the mechanisms involved in the processes linking air pollutants to the development of cardiovascular diseases.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Lu Jia ◽  
Qing Liu ◽  
Huiqing Hou ◽  
Guangli Guo ◽  
Ting Zhang ◽  
...  

Abstract Background Ambient air pollution is becoming a serious environmental problem in China. The results were inconsistent on that air pollution was a risk factor of preeclampsia in pregnancy. Methods Total 116,042 pregnant women were enrolled from 22 hospitals in 10 cities of Hebei Province, China from January 1, 2015 to December 31, 2017. The parturients were divided into preeclampsia group (PE group) and non-preeclampsia group (non-PE group). The data of air pollutants, namely, particulate matter (PM)2.5, PM10, NO2, SO2, CO, O3 were collected from China Environmental Inspection Station. Results Among the 116,042 pregnant women, 2988 (2.57%) pregnant women were diagnosed with preeclampsia. The concentrations of exposed PM2.5, PM10, NO2 and O3 in the PE group were significantly higher than those in the non-PE group, and they were risk factors of the PE group in the first and second trimester of pregnancy respectively. The concentrations of exposed SO2 and CO in PE patients and non-PE women were not different, but high concentration of these air pollutants were risk factors to PE in the second trimester. Conclusion The exposure to PM2.5, PM10, NO2, O3 were risk factors for preeclampsia in the first and second trimester of pregnancy, while only at high level, SO2 and CO were risk factors for preeclampsia in the second trimester of pregnancy.


Author(s):  
Hsiu-Yung Pan ◽  
Shun-Man Cheung ◽  
Fu-Cheng Chen ◽  
Kuan-Han Wu ◽  
Shih-Yu Cheng ◽  
...  

Background: Air pollution exposure is associated with greater risk for cardiovascular events. This study aims to examine the effects of increased exposure to short-term air pollutants on ST-segment elevation myocardial infarction (STEMI) and determine the susceptible groups. Methods: Data on particulate matter PM2.5 and PM10 and other air pollutants, measured at each of the 11 air-quality monitoring stations in Kaohsiung City, were collected between 2011 and 2016. The medical records of non-trauma adult (>17 years) patients who had visited the emergency department (ED) with a typical electrocardiogram change of STEMI were extracted. A time-stratified and case-crossover study design was used to examine the relationship between air pollutants and daily ED visits for STEMI. Results: An interquartile range increment in PM2.5 on lag 0 was associated with an increment of 25.5% (95% confidence interval, 2.6%–53.4%) in the risk of STEMI ED visits. Men and persons with ≥3 risk factors (male sex, age, hypertension, diabetes, current smoker, dyslipidemia, history of myocardial infarction, and high body mass index) for myocardial infarction (MI) were more sensitive to the hazardous effects of PM2.5 (interaction: p = 0.039 and p = 0.018, respectively). The associations between PM10, NO2, and O3 and STEMI did not achieve statistical significance. Conclusion: PM2.5 may play an important role in STEMI events on the day of exposure in Kaohsiung. Men and persons with ≥3 risk factors of MI are more susceptible to the adverse effects of PM2.5 on STEMI.


2021 ◽  
pp. 181-194
Author(s):  
A.E. Nosov ◽  
◽  
A.S. Baydina ◽  
O.Yu. Ustinova ◽  
◽  
...  

Ambient air pollution causes approximately 3.3 million untimely deaths annually (2.1 deaths due to ischemic heart disease and 1.1 million deaths due to stroke). Mortality caused by ambient air pollution is higher than mortality due to such traditional risk factors as smoking, obesity, and elevated dextrose contents in blood. Relative risk of mortality amounts to 1.26 (95 % CI 1.08–1.47) in cities with the highest air pollution against those where air pollution is the lowest. Occupational exposure to various chemical air pollutants can cause more than 1 million untimely deaths all over the world but its contribution to prevalence of cardiovascular diseases has not been determined sufficiently. Aerogenic pollutants are quite variable in their chemical structure and include both particulate matter (PM for short) and gaseous matter. The American Heart Association and the European Society of Cardiology consider PM2.5 to be a risk factor causing cardiovascular diseases. This analytical review presents data on effects produced by aerogenic pollutants on development of cardio-metabolic pathology and population mortality due to vascular and metabolic diseases (arterial hypertension, atherosclerosis and ischemic heart disease, heart rhythm disturbances, and type 2 diabetes mellitus). There are also data on mechanisms of pathogenetic influence exerted by aerogenic pollutants on development of such diseases including generation of anti-inflammatory and oxidative mediators and their release into blood flow; developing imbalance in the autonomic nervous system with prevailing activity of the sympathetic nervous system and disrupted heart rate variability; direct introduction of aerogenic pollutants from the lungs into blood flow with developing direct toxic effects. We have also analyzed literature data on protective effects produced by reduction in ambient air pollution on prevalence of cardiovascular pathology.


Author(s):  
Andreas Daiber ◽  
Jos Lelieveld ◽  
Sebastian Steven ◽  
Matthias Oelze ◽  
Swenja Kröller-Schön ◽  
...  

There is general consensus that environmental pollution and non-chemical stressors contribute to the incidence and prevalence of chronic noncommunicable disease (e.g. cardiovascular, metabolic and mental). Clinical and epidemiological studies support that air pollution and traffic noise are associated with a higher risk for cardiovascular disease and significantly contribute to overall mortality. In this respect, the “exposome” provides a comprehensive description of lifelong exposure history. A recent publication using an updated global exposure-mortality model found that the global all-cause mortality rate attributable to ambient air pollution by PM2.5 and O3 was 8.79 (95% CI 7.11–10.41) million in 2015 – much higher than previously calculated. For Europe this corresponds to 790,000 premature deaths due to ambient air pollution. Various large scale studies and expert commissions have identified air pollution as the leading health risk factor in the physical environment, followed by water and soil pollution with heavy metals, pesticides, other chemicals and occupational exposures, however neglecting the non-chemical environmental health risk factors: mental stress, light exposure, climatic changes and traffic noise. Especially for traffic noise-related health effects there are numerous clinical and epidemiological studies reporting significant impact on cardiovascular disease. We here provide an in-depth review on the health effects of the external exposome, with emphasis on air pollution and traffic noise and to a lesser degree mental stress and other environmental pollutants. In addition, we summarize our previously published experimental research investigating effects of aircraft noise exposure in mice and provide mechanistic insights on how noise contributes to noncommunicable disease.


1996 ◽  
Vol 7 (1) ◽  
pp. 51-56
Author(s):  
Simon Jenkins ◽  
David Hay

The effects of air pollution on health are complex. Carbon monoxide, ozone, sulphur dioxide and nitrogen dioxide have received most attention from scientific research. Until recently, however, the role of particulates has been much neglected. While there is a good understanding of the effects of certain pollutants in isolation, there is a poor understanding of the combined effects of different pollutants found in ambient air. The interactions between air pollution, allergic respiratory disease and exercise are the focus of this paper. Epidemiological studies suggest that allergic diseases such as asthma and hay fever have become more common over the last 50 years. Air pollution is not implicated directly, but there is evidence that air pollutants can alter airway reactivity and exacerbate asthma in allergic individuals. Exercise is an important factor because most asthmatics are prone to asthma triggered by moderate to severe exercise. The clinical evidence for health risks associated with atmospheric pollution is considerable, but the epidemiological evidence is less convincing. We find that this field of research is still largely unresolved and is hampered by conflicting use of terminology. In particular, the distinction between allergic disease and (less definitive) ‘sensitivities’ must be clarified. Further research is needed and the associations between sensitivity to air pollutants disease and exercise should be a focus.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Hannah Kim ◽  
Seung-Ah Choe ◽  
Ok-Jin Kim ◽  
Sun-Young Kim ◽  
Seulgi Kim ◽  
...  

AbstractBackgroundMounting evidence implicates an association between ambient air pollution and impaired reproductive potential of human. Our study aimed to assess the association between air pollution and ovarian reserve in young, infertile women.MethodsOur study included 2276 Korean women who attended a single fertility center in 2016–2018. Women’s exposure to air pollution was assessed using concentrations of particulate matter (PM10and PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3) that had been collected at 269 air quality monitoring sites. Exposure estimates were computed for 1, 3, 6, and 12 months prior to the ovarian reserve tests. Anti-Müllerian hormone (AMH) ratio (defined as an observed-to-expected AMH based on age) and low AMH (defined as < 0.5 ng/mL) were employed as indicators of ovarian reserve. We included a clustering effect of 177 districts in generalized estimating equations approach. A secondary analysis was conducted restricting the analyses to Seoul residents to examine the association in highly urbanized setting.ResultsThe mean age was 36.6 ± 4.2 years and AMH level was 3.3 ± 3.1 ng/mL in the study population. Average AMH ratio was 0.8 ± 0.7 and low AMH was observed in 10.3% of women (n=235). The average concentration of six air pollutants was not different between the normal ovarian reserve and low AMH groups for all averaging periods. In multivariable models, an interquartile range (IQR)-increase in 1 month-average PM10was associated with decrease in AMH ratio among total population (β= −0.06, 95% confidence interval: −0.11, 0.00). When we restrict our analysis to those living in Seoul, IQR-increases in 1 and 12 month-average PM2.5were associated with 3% (95% CI: −0.07, 0.00) and 10% (95% CI: −0.18, −0.01) decrease in AMH ratio. The ORs per IQR increase in the six air pollutants were close to null in total population and Seoul residents.ConclusionsIn a cohort of infertile Korean women, there was a suggestive evidence of the negative association between ambient PM concentration and ovarian reserve, highlighting the potential adverse impact of air pollution on women’s fertility.


2021 ◽  
Author(s):  
Yaqi Liu ◽  
Yi Jiang ◽  
Manyi Wu ◽  
Sunghar Muheyat ◽  
Dongai Yao ◽  
...  

Abstract Background There are few studies focused on the correlations between ambient air pollution and abdominal pain, especially in emergency departments in China. Method: Daily data (from January 1, 2016 to December 31, 2018), including air pollution concentration (SO2, NO2, PM2.5, PM10, CO, and O3) and meteorological variables, for daily emergency room visits (ERVs) were collected in Wuhan, China. We conducted a time-series study to investigate the potential correlation between six ambient air pollutants and ERVs for abdominal pain and their effects, in different genders, ages and seasons. Results A total of 16,306 abdominal pain ERVs were identified during the study period. A 10-µg/m3 increase in concentration of SO2, NO2, PM2.5, PM10, CO, and O3 corresponded respectively to incremental increases in abdominal pain of 6.12% (95% confidence interval [CI]: -0.44-13.12), 1.65% (95%CI: -0.25-3.59), 1.12% (95%CI: -0.18-2.44), 0.38% (95%CI: -1.09-1.87), 9.87% (95%CI:3.14–17.05) and 1.11% (95%CI: 0.03–2.21). We observed significant correlations between CO and O3 and daily abdominal pain ERVs increase, and positive but insignificant correlations between the other pollutants and ERVs. The effects were stronger mainly for females (especially SO2 and O3) and younger people (especially CO and O3). The correlations of PM2.5 and PM10 were stronger in cool seasons, while the correlation of CO was stronger in warm seasons. Conclusion Our time-series study suggested that short-term exposure to air pollution (especially CO and O3) was positively correlated with ERVs for abdominal pain in Wuhan, China, and that their effects varied by season, gender and age. These data can add evidence on how air pollutants affect the human body, and may prompt hospitals to take specific precautions on polluted days and maintain order in emergency departments made busier due to the pollution.


Author(s):  
Lisha Luo ◽  
Yunquan Zhang ◽  
Junfeng Jiang ◽  
Hanghang Luan ◽  
Chuanhua Yu ◽  
...  

In this study, we estimated the short-term effects of ambient air pollution on respiratory disease hospitalization in Taiyuan, China. Daily data of respiratory disease hospitalization, daily concentration of ambient air pollutants and meteorological factors from 1 October 2014 to 30 September 2017 in Taiyuan were included in our study. We conducted a time-series study design and applied a generalized additive model to evaluate the association between every 10-μg/m3 increment of air pollutants and percent increase of respiratory disease hospitalization. A total of 127,565 respiratory disease hospitalization cases were included in this study during the present period. In single-pollutant models, the effect values in multi-day lags were greater than those in single-day lags. PM2.5 at lag02 days, SO2 at lag03 days, PM10 and NO2 at lag05 days were observed to be strongly and significantly associated with respiratory disease hospitalization. No significant association was found between O3 and respiratory disease hospitalization. SO2 and NO2 were still significantly associated with hospitalization after adjusting for PM2.5 or PM10 into two-pollutant models. Females and younger population for respiratory disease were more vulnerable to air pollution than males and older groups. Therefore, some effective measures should be taken to strengthen the management of the ambient air pollutants, especially SO2 and NO2, and to enhance the protection of the high-risk population from air pollutants, thereby reducing the burden of respiratory disease caused by ambient air pollution.


2020 ◽  
Vol 105 (8) ◽  
pp. e2912-e2920
Author(s):  
Hyun-Jin Kim ◽  
Hyuktae Kwon ◽  
Jae Moon Yun ◽  
Belong Cho ◽  
Jin-Ho Park

Abstract Context Although a significant relationship has been reported between air pollution and thyroid function in limited samples or regions, few studies have addressed this association in the general population. Objective Using a nationwide sample of Korean adults, we investigated the association between exposure to air pollution and thyroid function, and whether this association differed between subgroups stratified according to age or body mass index (BMI). Methods We included 4704 adults in the final analysis and used each person’s annual average exposure to 4 air pollutants, namely, particulate matter with an aerodynamic diameter less than or equal to 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide, and carbon monoxide (CO). We measured serum thyrotropin (TSH) and free thyroxine (FT4) concentrations as indicators of thyroid function according to age and BMI. Results The annual average exposure to NO2 and CO was significantly associated with an elevated TSH and reduced FT4 concentration after adjusting for possible confounding factors (all P &lt; .05). In men, in addition to these 2 pollutants, PM10 exposure was positively associated with TSH level (P = .03). Age-stratified analysis showed stronger effects of NO2 and CO exposure in older than in younger adults. Exposure to these air pollutants was related to serum TSH and FT4 concentrations in people with overweight or obesity but not in those of normal weight. Conclusions This study provides the first evidence that air pollution exposure is linked to thyroid function in the general population and that this association may be stronger in older or overweight or obese adults.


Sign in / Sign up

Export Citation Format

Share Document