scholarly journals Cryo-EM structure of native human thyroglobulin

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ricardo Adaixo ◽  
Eva M. Steiner ◽  
Ricardo D. Righetto ◽  
Alexander Schmidt ◽  
Henning Stahlberg ◽  
...  

AbstractThe thyroglobulin (TG) protein is essential to thyroid hormone synthesis, plays a vital role in the regulation of metabolism, development and growth and serves as intraglandular iodine storage. Its architecture is conserved among vertebrates. Synthesis of triiodothyronine (T3) and thyroxine (T4) hormones depends on the conformation, iodination and post-translational modification of TG. Although structural information is available on recombinant and deglycosylated endogenous human thyroglobulin (hTG) from patients with goiters, the structure of native, fully glycosylated hTG remained unknown. Here, we present the cryo-electron microscopy structure of native and fully glycosylated hTG from healthy thyroid glands to 3.2 Å resolution. The structure provides detailed information on hormonogenic and glycosylation sites. We employ liquid chromatography–mass spectrometry (LC-MS) to validate these findings as well as other post-translational modifications and proteolytic cleavage sites. Our results offer insights into thyroid hormonogenesis of native hTG and provide a fundamental understanding of clinically relevant mutations.

2021 ◽  
Author(s):  
Ricardo Adaixo ◽  
Eva M. Steiner ◽  
Ricardo D. Righetto ◽  
Alexander Schmidt ◽  
Henning Stahlberg ◽  
...  

The thyroglobulin (Tg) protein is essential to thyroid hormone synthesis, playing a vital role in the regulation of metabolism, development and growth. Its structure is conserved among vertebrates. Tg is delivered through the secretory pathway of the thyroid follicular unit to the central colloid depository, where it is iodinated at specific tyrosine sites to form mono- or diiodotyrosine, which combine to produce triiodothyronine (T3) and thyroxine (T4), respectively. Synthesis of these hormones depends on the precise 3D structure of Tg, which has remained unknown despite decades of research. Here, we present the cryo-electron microscopy structure of human thyroglobulin (hTg) to a global resolution of 3.2 Å. The structure provides detailed information on the location of the hTg hormonogenic sites and reveals the position as well as the role of many of its glycosylation sites. Our results offer structural insight into thyroid hormonogenesis and provide a fundamental understanding of clinically relevant hTg mutations, which can improve treatment of thyroid diseases.


2021 ◽  
Author(s):  
Ricardo Adaixo ◽  
Eva Steiner ◽  
Ricardo Righetto ◽  
Alexander Schmidt ◽  
Henning Stahlberg ◽  
...  

Abstract The thyroglobulin (Tg) protein is essential to thyroid hormone synthesis, playing a vital role in the regulation of metabolism, development and growth. Its structure is conserved among vertebrates. Tg is delivered through the secretory pathway of the thyroid follicular unit to the central colloid depository, where it is iodinated at specific tyrosine sites to form mono- or diiodotyrosine, which combine to produce triiodothyronine (T3) and thyroxine (T4), respectively. Synthesis of these hormones depends on the precise 3D structure of Tg, which has remained unknown despite decades of research. Here, we present the cryo-electron microscopy structure of human thyroglobulin (hTg) to a global resolution of 3.2 Å. The structure provides detailed information on the location of the hTg hormonogenic sites and reveals the position as well as the role of many of its glycosylation sites. Our results offer structural insight into thyroid hormonogenesis and provide a fundamental understanding of clinically relevant hTg mutations, which can improve treatment of thyroid diseases.


Author(s):  
Zeyu Sun ◽  
Keyi Ren ◽  
Xing Zhang ◽  
Jinghua Chen ◽  
Zhengyi Jiang ◽  
...  

AbstractThe pneumonia-causing COVID-19 pandemia has prompt worldwide efforts to understand its biological and clinical traits of newly identified HCoV-19 virus. In this study, post-translational modification (PTM) of recombinant HCoV-19 S and hACE2 were characterized by LC-MSMS. We revealed that both proteins were highly decorated with specific proportions of N-glycan subtypes. Out of 21 possible glycosites in HCoV-19 S protein, 20 were confirmed completely occupied by N-glycans, with oligomannose glycans being the most abundant type. All 7 possible glycosylation sites in hACE2 were completely occupied mainly by complex type N-glycans. However, we showed that glycosylation did not directly contribute to the binding affinity between SARS-CoV spike protein and hACE2. Additionally, we also identified multiple sites methylated in both proteins, and multiple prolines in hACE2 were converted to hydroxylproline. Refined structural models were built by adding N-glycan and PTMs to recently published cryo-EM structure of the HCoV-19 S and hACE2 generated with glycosylation sites in the vicinity of binding surface. The PTM and glycan maps of both HCoV-19 S and hACE2 provide additional structural details to study mechanisms underlying host attachment, immune response mediated by S protein and hACE2, as well as knowledge to develop remedies and vaccines desperately needed nowadays.


2007 ◽  
Vol 98 (11) ◽  
pp. 988-997 ◽  
Author(s):  
Thomas Steenstrup ◽  
Claus Kristensen ◽  
Gert Bolt

SummaryHuman coagulation factor VII (FVII) has two N-glycosylation sites (N145 and N322) and two O-glycosylation sites (S52 and S60). In transiently transfected COS-7 cells, all combinations of N- and O-glycosylation knock-out mutations reduced the release of FVII to the medium. Pulse-chase analysis of CHO-K1 cell lines expressing recombinant FVII demonstrated that virtually all wild-type FVII synthesized was secreted from the cells, whereas both N- and O- glycosylation knock-out mutations induced partial intracellular degradation of the synthesized FVII. Likewise, two thirds of the FVII synthesized in vitamin K-depleted and warfarin-treated CHO cells was degraded intracellularly, demonstrating the importance of gamma-carboxylation for the secretion of FVII. The furin inhibitor decanoyl-R-V-K-R-chloromethylketone inhibited propeptide cleavage, but FVII with propeptide appeared to be secreted equally well as FVII without propeptide. Propeptide cleavage was not inhibited by vitamin K depletion and warfarin treatment, suggesting that for FVII, correct gamma-carboxylation is not required for optimal processing of the propeptide. In conclusion, all post-translational modifications of FVII except propeptide cleavage were important for complete secretion of the synthesized FVII and to avoid intracellular degradation. Thus, the extensive post-translational modification of FVII seems critical for the intracellular stability of the protein and is required for keeping the protein in the secretory pathway.


2019 ◽  
Vol 63 (2) ◽  
pp. 267-279
Author(s):  
Huipeng Yang ◽  
Jie Wu

AbstractAn increasingly amount of evidence supports that the evolution of eusociality is accompanies by shifts in ancient molecular and physiological pathways. The juvenile hormone, one of the most important hormones in the post-embryonic development of insects, attracts the most attention in the context of social organization. Allatoregulatory neuropeptides (Allatotropin, Allatostatin-A and Allatostatin-C) are known to regulate juvenile hormone synthesis and release in insects. In order to clarify the transitions of juvenile hormone synthesis involved in eusocial evolution, the substitutions of amino acid residues and the complexity of post-translational modifications in allatoregulatory neuropeptide receptors were characterized. Both allatotropin and allatostatin receptors are identified in all examined bee species regardless if they are solitary or eusocial. Although the amino acid sequences are highly conserved, phylogenetic results are consistent with the eusocial status. The abundance of predicted post-translational modifications correlates with social complexity except for that in allatostatin-C receptors. Even though the consequences of these specific amino acid substitutions and various post-translational modification complexity have not been studied, they likely contribute to the localizing, binding and coupling characteristics of the receptor groups.


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


1992 ◽  
Vol 288 (3) ◽  
pp. 919-924 ◽  
Author(s):  
I Linhartová ◽  
P Dráber ◽  
E Dráberová ◽  
V Viklický

Individual beta-tubulin isoforms in developing mouse brain were characterized using immunoblotting, after preceding high-resolution isoelectric focusing, with monoclonal antibodies against different structural regions of beta-tubulin. Some of the antibodies reacted with a limited number of tubulin isoforms in all stages of brain development and in HeLa cells. The epitope for the TU-14 antibody was located in the isotype-defining domain and was present on the beta-tubulin isotypes of classes I, II and IV, but absent on the neuron-specific class-III isotype. The data suggest that non-class-III beta-tubulins in mouse brain are substrates for developmentally regulated post-translational modifications and that beta-tubulins of non-neuronal cells are also post-translationally modified.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 178
Author(s):  
Jiann Ruey Ong ◽  
Oluwaseun Adebayo Bamodu ◽  
Nguyen Viet Khang ◽  
Yen-Kuang Lin ◽  
Chi-Tai Yeh ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most diagnosed malignancies and a leading cause of cancer-related mortality globally. This is exacerbated by its highly aggressive phenotype, and limitation in early diagnosis and effective therapies. The SUMO-activating enzyme subunit 1 (SAE1) is a component of a heterodimeric small ubiquitin-related modifier that plays a vital role in SUMOylation, a post-translational modification involving in cellular events such as regulation of transcription, cell cycle and apoptosis. Reported overexpression of SAE1 in glioma in a stage-dependent manner suggests it has a probable role in cancer initiation and progression. In this study, hypothesizing that SAE1 is implicated in HCC metastatic phenotype and poor prognosis, we analyzed the expression of SAE1 in several cancer databases and to unravel the underlying molecular mechanism of SAE1-associated hepatocarcinogenesis. Here, we demonstrated that SAE1 is over-expressed in HCC samples compared to normal liver tissue, and this observed SAE1 overexpression is stage and grade-dependent and associated with poor survival. The receiver operating characteristic analysis of SAE1 in TCGA−LIHC patients (n = 421) showed an AUC of 0.925, indicating an excellent diagnostic value of SAE1 in HCC. Our protein-protein interaction analysis for SAE1 showed that SAE1 interacted with and activated oncogenes such as PLK1, CCNB1, CDK4 and CDK1, while simultaneously inhibiting tumor suppressors including PDK4, KLF9, FOXO1 and ALDH2. Immunohistochemical staining and clinicopathological correlate analysis of SAE1 in our TMU-SHH HCC cohort (n = 54) further validated the overexpression of SAE1 in cancerous liver tissues compared with ‘normal’ paracancerous tissue, and high SAE1 expression was strongly correlated with metastasis and disease progression. The oncogenic effect of upregulated SAE1 is associated with dysregulated cancer metabolic signaling. In conclusion, the present study demonstrates that SAE1 is a targetable cancer metabolic biomarker with high potential diagnostic and prognostic implications for patients with HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. K. Rout ◽  
M. Verma

AbstractGoat milk is a source of nutrition in difficult areas and has lesser allerginicity than cow milk. It is leading in the area for nutraceutical formulation and drug development using goat mammary gland as a bioreactor. Post translational modifications of a protein regulate protein function, biological activity, stabilization and interactions. The protein variants of goat milk from 10 breeds were studied for the post translational modifications by combining highly sensitive 2DE and Q-Exactive LC-MS/MS. Here we observed high levels of post translational modifications in 201 peptides of 120 goat milk proteins. The phosphosites observed for CSN2, CSN1S1, CSN1S2, CSN3 were 11P, 13P, 17P and 6P, respectively in 105 casein phosphopeptides. Whey proteins BLG and LALBA showed 19 and 4 phosphosites respectively. Post translational modification was observed in 45 low abundant non-casein milk proteins mainly associated with signal transduction, immune system, developmental biology and metabolism pathways. Pasp is reported for the first time in 47 sites. The rare conserved peptide sequence of (SSSEE) was observed in αS1 and αS2 casein. The functional roles of identified phosphopeptides included anti-microbial, DPP-IV inhibitory, anti-inflammatory and ACE inhibitory. This is first report from tropics, investigating post translational modifications in casein and non-casein goat milk proteins and studies their interactions.


Sign in / Sign up

Export Citation Format

Share Document