scholarly journals Comparing crystal structures with symmetry and geometry

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
John C. Thomas ◽  
Anirudh Raju Natarajan ◽  
Anton Van der Ven

AbstractMeasuring the similarity between two arbitrary crystal structures is a common challenge in crystallography and materials science. Although there are an infinite number of ways to mathematically relate two crystal structures, only a few are physically meaningful. Here we introduce both a geometry-based and a symmetry-adapted similarity metric to compare crystal structures. Using crystal symmetry and combinatorial optimization we describe an algorithm to arrive at the structural relationship that minimizes these similarity metrics across all possible maps between any pair of crystal structures. The approach makes it possible to (i) identify pairs of crystal structures that are identical, (ii) quantitatively measure the similarity between crystal structures, and (iii) find and rank structural transformation pathways between any pair of crystal structures. We discuss the advantages of using the symmetry-adapted cost metric over the geometric cost. Finally, we show that all known structural transformation pathways between common crystal structures are recovered with the mapping algorithm. The methodology presented in this study will be of value to efforts that seek to catalogue crystal structures, identify structural transformation pathways or prune large first-principles datasets used to parameterize on-lattice Hamiltonians.

MRS Bulletin ◽  
1998 ◽  
Vol 23 (1) ◽  
pp. 22-27 ◽  
Author(s):  
David M. Teter

A central challenge to modern materials science is the rational design and synthesis of new materials possessing exceptional properties. Recent advances in first-principles modeling methods and the availability of increasingly powerful computational resources make this goal increasingly achievable. The strength of these modeling methods lies in their predictive ability. They are able to reproduce the crystal structures and elastic properties of a large class of materials to within 2–3% of experimental values and have predicted a number of phase transitions that have been verified experimentally.Despite the power of these methods, the process of designing materials from first principles is not usually a straight-forward or simple one. It requires overcoming a number of obstacles, some of them quite formidable. First a calculable figure of merit that correlates well with the desired property must be identified. While this may be straightforward in some cases, in others—such as predicting the ability of a material to isolate radionuclides over million-year time scales—the process of reducing complex properties to a few calculable variables can be rather difficult. Next a promising chemical system and a realistic set of crystal structures must be selected. This is not trivial because predicting the structures that can crystallize in a given system can be exceedingly challenging. However a wide variety of methods are available to aid in the generation of promising structures — comparative crystallography, algorithms based upon the concepts of crystalline nets and close packing, modern alloy theory methods, and simulated annealing strategies being some examples.


2020 ◽  
Vol 7 (21) ◽  
pp. 4197-4221 ◽  
Author(s):  
Francisco Colmenero ◽  
Jakub Plášil ◽  
Jiří Sejkora

The structure, hydrogen bonding, X-ray diffraction pattern and mechanical properties of six important uranyl carbonate minerals, roubaultite, fontanite, sharpite, widenmannite, grimselite and čejkaite, are determined using first principles methods.


2011 ◽  
Vol 13 (20) ◽  
pp. 5432-5435 ◽  
Author(s):  
Eric Assen B. Kantchev ◽  
Huei Shuan Tan ◽  
Tyler B. Norsten ◽  
Michael B. Sullivan

2010 ◽  
Vol 654-656 ◽  
pp. 47-50 ◽  
Author(s):  
In Gee Kim ◽  
Gul Rahman ◽  
Jae Hoon Jang ◽  
You Young Song ◽  
Seung Woo Seo ◽  
...  

The formation enthalpy of a series of Fe-C carbides has been estimated using a first-principles approach. The Fe to C ratio dependence of the formation enthalpy is reasonable, but it is revealed that - and -carbides require an extraordinary environment to be able to form. Furthermore, an addition of substitutional solutes other than Fe and C should promote other carbides with different crystal structures. The analysis suggests further studies to discover the critical concentrations of alloying which stimulate the other carbides to become more stable.


Author(s):  
Boris Kozinsky ◽  
David J. Singh

The performance of thermoelectric materials is determined by their electrical and thermal transport properties that are very sensitive to small modifications of composition and microstructure. Discovery and design of next-generation materials are starting to be accelerated by computational guidance. We review progress and challenges in the development of accurate and efficient first-principles methods for computing transport coefficients and illustrate approaches for both rapid materials screening and focused optimization. Particularly important and challenging are computations of electron and phonon scattering rates that enter the Boltzmann transport equations, and this is where there are many opportunities for improving computational methods. We highlight the first successful examples of computation-driven discoveries of high-performance materials and discuss avenues for tightening the interaction between theoretical and experimental materials discovery and optimization. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hongping Zhang ◽  
Run Zhang ◽  
Chenghua Sun ◽  
Yan Jiao ◽  
Yaping Zhang

Electrochemical carbon dioxide reduction (CRR) to fuels is one of the significant challenges in materials science and chemistry. Recently, single metal atom catalysts based on 2D materials provide a promising...


Sign in / Sign up

Export Citation Format

Share Document