scholarly journals Adjusting vascular permeability, leukocyte infiltration, and microglial cell activation to rescue dopaminergic neurons in rodent models of Parkinson’s disease

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hua-Ying Cai ◽  
Xiao-Xiao Fu ◽  
Hong Jiang ◽  
Shu Han

AbstractAnimal studies have indicated that increased blood-brain barrier (BBB) permeability and inflammatory cell infiltration are involved during the progression of Parkinson’s disease (PD). This study used C16, a peptide that competitively binds to integrin αvβ3 and inhibits inflammatory cell infiltration, as well as angiopoietin-1 (Ang-1), an endothelial growth factor crucial for blood vessel protection, to reduce inflammation and improve the central nervous system (CNS) microenvironment in murine models of PD. The combination of C16 and Ang-1 yielded better results compared to the individual drugs alone in terms of reducing dopaminergic neuronal apoptosis, ameliorating cognitive impairment, and electrophysiological dysfunction, attenuating inflammation in the CNS microenvironment, and improving the functional disability in PD mice or rats. These results suggest neuroprotective and anti-inflammatory properties of the C16 peptide plus Ang-1 in PD.

Author(s):  
W.R. Wayne Martin ◽  
Marguerite Wieler

Parkinson's disease is a progressive neurodegenerative disorder that demands a holistic approach to treatment. Both pharmacologic and nonpharmacologic interventions play an important role in the comprehensive management of this disorder. While levodopa remains the single most effective medication for symptomatic treatment, dopamine agonists are playing an increasingly important role. Motor complications of dopaminergic therapy are a significant issue, particularly in patients with more advanced disease who have been on levodopa for several years. All therapeutic interventions must be tailored to the individual and modified as the disease progresses, with the goal of minimizing significant functional disability as much as possible.


2008 ◽  
Vol 70 (3) ◽  
pp. 269-273
Author(s):  
Taisuke KAMIYAMA ◽  
Yoshihiro KAWAGUCHI ◽  
Masami SASAKI ◽  
Masamichi SATOU ◽  
Kumiko MIURA ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1126
Author(s):  
Giovanna Iezzi ◽  
Francesca Di Lillo ◽  
Michele Furlani ◽  
Marco Degidi ◽  
Adriano Piattelli ◽  
...  

Symmetric and well-organized connective tissues around the longitudinal implant axis were hypothesized to decrease early bone resorption by reducing inflammatory cell infiltration. Previous studies that referred to the connective tissue around implant and abutments were based on two-dimensional investigations; however, only advanced three-dimensional characterizations could evidence the organization of connective tissue microarchitecture in the attempt of finding new strategies to reduce inflammatory cell infiltration. We retrieved three implants with a cone morse implant–abutment connection from patients; they were investigated by high-resolution X-ray phase-contrast microtomography, cross-linking the obtained information with histologic results. We observed transverse and longitudinal orientated collagen bundles intertwining with each other. In the longitudinal planes, it was observed that the closer the fiber bundles were to the implant, the more symmetric and regular their course was. The transverse bundles of collagen fibers were observed as semicircular, intersecting in the lamina propria of the mucosa and ending in the oral epithelium. No collagen fibers were found radial to the implant surface. This intertwining three-dimensional pattern seems to favor the stabilization of the soft tissues around the implants, preventing inflammatory cell apical migration and, consequently, preventing bone resorption and implant failure. This fact, according to the authors’ best knowledge, has never been reported in the literature and might be due to the physical forces acting on fibroblasts and on the collagen produced by the fibroblasts themselves, in areas close to the implant and to the symmetric geometry of the implant itself.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 732
Author(s):  
Gianfranco Natale ◽  
Larisa Ryskalin ◽  
Gabriele Morucci ◽  
Gloria Lazzeri ◽  
Alessandro Frati ◽  
...  

The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to identifying various neuronal cytotypes belonging to ENS in baseline conditions. The second part of the study provides evidence on how these very same neurons are altered during Parkinson’s disease. In fact, although being defined as a movement disorder, Parkinson’s disease features a number of degenerative alterations, which often anticipate motor symptoms. Among these, the GI tract is often involved, and for this reason, it is important to assess its normal and pathological structure. A deeper knowledge of the ENS is expected to improve the understanding of diagnosis and treatment of Parkinson’s disease.


2021 ◽  
pp. 107385842199226
Author(s):  
Stellina Y. H. Lee ◽  
Nathanael J. Yates ◽  
Susannah J. Tye

Inflammation is a critical factor contributing to the progressive neurodegenerative process observed in Parkinson’s disease (PD). Microglia, the immune cells of the central nervous system, are activated early in PD pathogenesis and can both trigger and propagate early disease processes via innate and adaptive immune mechanisms such as upregulated immune cells and antibody-mediated inflammation. Downstream cytokines and gene regulators such as microRNA (miRNA) coordinate later disease course and mediate disease progression. Biomarkers signifying the inflammatory and neurodegenerative processes at play within the central nervous system are of increasing interest to clinical teams. To be effective, such biomarkers must achieve the highest sensitivity and specificity for predicting PD risk, confirming diagnosis, or monitoring disease severity. The aim of this review was to summarize the current preclinical and clinical evidence that suggests that inflammatory processes contribute to the initiation and progression of neurodegenerative processes in PD. In this article, we further summarize the data about main inflammatory biomarkers described in PD to date and their potential for regulation as a novel target for disease-modifying pharmacological strategies.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Weigang Jia ◽  
Wei Wang ◽  
Rui Li ◽  
Quanyu Zhou ◽  
Ying Qu ◽  
...  

Abstract Background In recent years, it has been reported that Qinbai Qingfei Concentrated Pellet (QQCP) has the effect of relieving cough and reducing sputum. However, the therapeutic potentials of QQCP on post-infectious cough (PIC) rat models has not been elucidated. So the current study was aimed to scientifically validate the efficacy of QQCP in post infectious cough. Methods All rats were exposed to sawdust and cigarette smokes for 10 days, and intratracheal lipopolysaccharide (LPS) and capsaicin aerosols. Rats were treated with QQCP at dose of 80, 160, 320 mg/kg. Cough frequency was monitored twice a day for 10 days after drug administration. Inflammatory cell infiltration was determined by ELISA. Meanwhile, the histopathology of lung tissue and bronchus in rats were evaluated by hematoxylin-eosin staining (H&E). Neurogenetic inflammation were measured by ELISA and qRT-PCR. Results QQCP dose-dependently decreased the cough frequency and the release of pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8, but exerted the opposite effects on the secretion of anti-inflammatory cytokines IL-10 and IL-13 in BALF and serum of PIC rats. The oxidative burden was effectively ameliorated in QQCP-treated PIC rats as there were declines in Malondialdehyde (MDA) content and increases in Superoxide dismutase (SOD) activity in the serum and lung tissue. In addition, QQCP blocked inflammatory cell infiltration into the lung as evidenced by the reduced number of total leukocytes and the portion of neutrophils in the broncho - alveolar lavage fluid (BALF) as well as the alleviated lung damage. Furthermore, QQCP considerable reversed the neurogenetic inflammation caused by PIC through elevating neutral endopeptidase (NEP) activity and reducing Substance P (SP) and Calcitonin gene related peptide (CGRP) expression in BALF, serum and lung tissue. Conclusions Our study indicated that QQCP demonstrated a protective role of PIC and may be a potential therapeutic target of PIC.


2013 ◽  
Vol 114 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Peter Marklund ◽  
C. Mikael Mattsson ◽  
Britta Wåhlin-Larsson ◽  
Elodie Ponsot ◽  
Björn Lindvall ◽  
...  

The impact of a 24-h ultraendurance exercise bout on systemic and local muscle inflammatory reactions was investigated in nine experienced athletes. Blood and muscle biopsies were collected before (Pre), immediately after the exercise bout (Post), and after 28 h of recovery (Post28). Circulating blood levels of leukocytes, creatine kinase (CK), C-reactive protein (CRP), and selected inflammatory cytokines were assessed together with the evaluation of the occurrence of inflammatory cells (CD3+, CD8+, CD68+) and the expression of major histocompatibility complex class I (MHC class I) in skeletal muscle. An extensive inflammatory cell infiltration occurred in all athletes, and the number of CD3+, CD8+, and CD68+ cells were two- to threefold higher at Post28 compared with Pre ( P < 0.05). The inflammatory cell infiltration was associated with a significant increase in the expression of MHC class I in muscle fibers. There was a significant increase in blood leukocyte count, IL-6, IL-8, CRP, and CK at Post. At Post28, total leukocytes, IL-6, and CK had declined, whereas IL-8 and CRP continued to increase. Increases in IL-1β and TNF-α were not significant. There were no significant associations between the magnitude of the systemic and local muscle inflammatory reactions. Signs of muscle degenerative and regenerative events were observed in all athletes with various degrees of severity and were not affected by the 24-h ultraendurance exercise bout. In conclusion, a low-intensity but very prolonged single-endurance exercise bout can generate a strong inflammatory cell infiltration in skeletal muscle of well-trained experienced ultraendurance athletes, and the amplitude of the local reaction is not proportional to the systemic inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document