scholarly journals Unusual magnetoelectric effect in paramagnetic rare-earth langasite

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Lukas Weymann ◽  
Lorenz Bergen ◽  
Thomas Kain ◽  
Anna Pimenov ◽  
Alexey Shuvaev ◽  
...  

Abstract Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed matter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect—the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, HoxLa3−xGa5SiO14, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field.

2015 ◽  
Vol 233-234 ◽  
pp. 443-446 ◽  
Author(s):  
D.A. Sechin ◽  
E.P. Nikolaeva ◽  
A.P. Pyatakov ◽  
A.B. Nikolaev ◽  
T.B. Kosykh

Domain walls in iron garnet films demonstrate magnetoelectric properties that manifest themselves as a displacement induced by inhomogeneous electric field. In this paper the results of the study of electric field induced domain wall dynamics and its dependence on external magnetic field are presented. The measured velocity of the electrically induced domain wall motion increased by an order with the magnetic field applied perpendicular to the domain wall plane. The numerical simulation shows that the observed behaviour of the domain wall can be explained by magnetic field induced modification of its internal micromagnetic structure and enhancement of the electric polarization associated with the wall.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3717
Author(s):  
Jae-Young Jung ◽  
Soung-Soo Yi ◽  
Dong-Hyun Hwang ◽  
Chang-Sik Son

The precursor prepared by co-precipitation method was sintered at various temperatures to synthesize crystalline manganese tungstate (MnWO4). Sintered MnWO4 showed the best crystallinity at a sintering temperature of 800 °C. Rare earth ion (Dysprosium; Dy3+) was added when preparing the precursor to enhance the magnetic and luminescent properties of crystalline MnWO4 based on these sintering temperature conditions. As the amount of rare earth ions was changed, the magnetic and luminescent characteristics were enhanced; however, after 0.1 mol.%, the luminescent characteristics decreased due to the concentration quenching phenomenon. In addition, a composite was prepared by mixing MnWO4 powder, with enhanced magnetism and luminescence properties due to the addition of dysprosium, with epoxy. To one of the two prepared composites a magnetic field was applied to induce alignment of the MnWO4 particles. Aligned particles showed stronger luminescence than the composite sample prepared with unsorted particles. As a result of this, it was suggested that it can be used as phosphor and a photosensitizer by utilizing the magnetic and luminescent properties of the synthesized MnWO4 powder with the addition of rare earth ions.


2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


1967 ◽  
Vol 1 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. D. Cowley

Ionizing shocks for plane flows with the magnetic field lying in the flow plane are considered. The gas is assumed to be electrically conducting downstream, but non-conducting upstream. Shocks whose downstream state has a normal velocity component less than the slow magneto-acoustic-wave speed and whose upstream state is supersonic are found to be non-evolutionary in the face of plane magneto-acoustic disturbances, unless the upstream electric field in a frame of reference where the gas is at rest is arbitrary. Velocity conditions are also determined for shock stability with the electric field not arbitrary.Shock structures are found for the case of large ohmic diffusion, the initial temperature rise and ionization of the gas being caused by a thin transition having the properties of an ordinary gasdynamic shock. For the case where shocks are evolutionary when the upstream electric field is arbitrary, the shock structure requirements only restrict the electric field by limiting the range of possible values. When shocks are evolutionary with the electric field not arbitrary, they can only have a structure for a particular value of the electric field. Limits to the current carried by ionizing shocks and the effects of precursor ionization are discussed qualitatively.


2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.


2018 ◽  
Vol 620 ◽  
pp. A191 ◽  
Author(s):  
M. Benko ◽  
S. J. González Manrique ◽  
H. Balthasar ◽  
P. Gömöry ◽  
C. Kuckein ◽  
...  

Context. It has been empirically determined that the umbra-penumbra boundaries of stable sunspots are characterized by a constant value of the vertical magnetic field. Aims. We analyzed the evolution of the photospheric magnetic field properties of a decaying sunspot belonging to NOAA 11277 between August 28–September 3, 2011. The observations were acquired with the spectropolarimeter on-board of the Hinode satellite. We aim to prove the validity of the constant vertical magnetic-field boundary between the umbra and penumbra in decaying sunspots. Methods. A spectral-line inversion technique was used to infer the magnetic field vector from the full-Stokes profiles. In total, eight maps were inverted and the variation of the magnetic properties in time were quantified using linear or quadratic fits. Results. We find a linear decay of the umbral vertical magnetic field, magnetic flux, and area. The penumbra showed a linear increase of the vertical magnetic field and a sharp decay of the magnetic flux. In addition, the penumbral area quadratically decayed. The vertical component of the magnetic field is weaker on the umbra-penumbra boundary of the studied decaying sunspot compared to stable sunspots. Its value seem to be steadily decreasing during the decay phase. Moreover, at any time of the sunspot decay shown, the inner penumbra boundary does not match with a constant value of the vertical magnetic field, contrary to what is seen in stable sunspots. Conclusions. During the decaying phase of the studied sunspot, the umbra does not have a sufficiently strong vertical component of the magnetic field and is thus unstable and prone to be disintegrated by convection or magnetic diffusion. No constant value of the vertical magnetic field is found for the inner penumbral boundary.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Xudong Shen ◽  
Long Zhou ◽  
Yisheng Chai ◽  
Yan Wu ◽  
Zhehong Liu ◽  
...  

Abstract All the magnetoelectric properties of scheelite-type DyCrO4 are characterized by temperature- and field-dependent magnetization, specific heat, permittivity, electric polarization, and neutron diffraction measurements. Upon application of a magnetic field within ±3 T, the nonpolar collinear antiferromagnetic structure leads to a large linear magnetoelectric effect with a considerable coupling coefficient. An applied electric field can induce the converse linear magnetoelectric effect, realizing magnetic field control of ferroelectricity and electric field control of magnetism. Furthermore, a higher magnetic field (>3 T) can cause a metamagnetic transition from the initially collinear antiferromagnetic structure to a canted structure, generating a large ferromagnetic magnetization up to 7.0 μB f.u.−1. Moreover, the new spin structure can break the space inversion symmetry, yielding ferroelectric polarization, which leads to coupling of ferromagnetism and ferroelectricity with a large ferromagnetic component.


2021 ◽  
Author(s):  
Shuai Yang

Abstract In the past scientific cognition, changes in the magnetic field produce electric field, so when there is current and voltage generation, need to have a change in magnetic flux, However, in the process of studying the nature of magnetization, we found that the microscopic formation of a magnetic field is the directional movement of positive and negative charges, under the guidance of this theory, we use other methods, realize the separation of positive and negative charges, observation of induced current generation, this can be used as another way to generate electricity.


Sign in / Sign up

Export Citation Format

Share Document