scholarly journals The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rafaël Govaerts ◽  
Eimear Nic Lughadha ◽  
Nicholas Black ◽  
Robert Turner ◽  
Alan Paton

AbstractThe World Checklist of Vascular Plants (WCVP) is a comprehensive list of scientifically described plant species, compiled over four decades, from peer-reviewed literature, authoritative scientific databases, herbaria and observations, then reviewed by experts. It is a vital tool to facilitate plant diversity research, conservation and effective management, including sustainable use and equitable sharing of benefits. To maximise utility, such lists should be accessible, explicitly evidence-based, transparent, expert-reviewed, and regularly updated, incorporating new evidence and emerging scientific consensus. WCVP largely meets these criteria, being continuously updated and freely available online. Users can browse, search, or download a user-defined subset of accepted species with corresponding synonyms and bibliographic details, or a date-stamped full dataset. To facilitate appropriate data reuse by individual researchers and global initiatives including Global Biodiversity Information Facility, Catalogue of Life and World Flora Online, we document data collation and review processes, the underlying data structure, and the international data standards and technical validation that ensure data quality and integrity. We also address the questions most frequently received from users.

2020 ◽  
pp. 151-156
Author(s):  
A. P. Korablev ◽  
N. S. Liksakova ◽  
D. M. Mirin ◽  
D. G. Oreshkin ◽  
P. G. Efimov

A new species list of plants and lichens of Russia and neighboring countries has been developed for Turboveg for Windows, the program, intended for storage and management of phytosociological data (relevés), is widely used all around the world (Hennekens, Schaminée, 2001; Hennekens, 2015). The species list is built upon the database of the Russian website Plantarium (Plantarium…: [site]), which contains a species atlas and illustrated an online Handbook of plants and lichens. The nomenclature used on Plantarium was originally based on the following issues: vascular plants — S. K. Cherepanov (1995) with additions; mosses — «Flora of mosses of Russia» (Proect...: [site]); liverworts and hornworts — A. D. Potemkin and E. V. Sofronova (2009); lichens — «Spisok…» G. P. Urbanavichyus ed. (2010); other sources (Plantarium...: [site]). The new species list, currently the most comprehensive in Turboveg format for Russia, has 89 501 entries, including 4627 genus taxa compare to the old one with 32 020 entries (taxa) and only 253 synonyms. There are 84 805 species and subspecies taxa in the list, 37 760 (44.7 %) of which are accepted, while the others are synonyms. Their distribution by groups of organisms and divisions are shown in Table. A large number of synonyms in the new list and its adaptation to work with the Russian literature will greatly facilitate the entry of old relevé data. The ways of making new list, its structure as well as the possibilities of checking taxonomic lists on Internet resources are considered. The files of the species list for Turboveg 2 and Turboveg 3, the technique of associating existing databases with a new species list (in Russian) are available on the web page https://www.binran.ru/resursy/informatsionnyye-resursy/tekuschie-proekty/species_list_russia/.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1971
Author(s):  
Asad Sarwar Qureshi

The Gulf Cooperation Council (GCC) countries are located in the driest part of the world with an annual per capita water availability of 500 m3 compared to the world average of 6000 m3. Agricultural water demand, which is more than 80% of the total water consumption, is primarily met through the massive exploitation of groundwater. The enormous imbalance between groundwater discharge (27.8 billion m3) and recharge (5.3 billion m3) is causing the excessive lowering of groundwater levels. Therefore, GCC countries are investing heavily in the production of nonconventional water resources such as desalination of seawater and treated wastewater. Currently, 439 desalination plants are annually producing 5.75 billion m3 of desalinated water in the GCC countries. The annual wastewater collection is about 4.0 billion m3, of which 73% is treated with the help of 300 wastewater treatment plants. Despite extreme water poverty, only 39% of the treated wastewater is reused, and the remaining is discharged into the sea. The treated wastewater (TWW) is used for the landscape, forestry, and construction industries. However, its reuse to irrigate food and forage crops is restricted due to health, social, religious, and environmental concerns. Substantial research evidence exists that treated wastewater can safely be used to grow food and forage crops under the agroclimatic conditions of the GCC countries by adopting appropriate management measures. Therefore, GCC countries should work on increasing the use of TWW in the agriculture sector. Increased use of TWW in agriculture can significantly reduce the pressure on freshwater resources. For this purpose, a comprehensive awareness campaign needs to be initiated to address the social and religious concerns of farming communities and consumers. Several internal and external risks can jeopardize the sustainable use of treated wastewater in the GCC countries. These include climate change, increasing costs, technological and market-driven changes, and regional security issues. Therefore, effective response mechanisms should be developed to mitigate future risks and threats. For this purpose, an integrated approach involving all concerned local and regional stakeholders needs to be adopted.


A brief review of the major advances since 1979 in Silurian and Devonian palaeobotany is followed by a preliminary report on a Gedinnian assemblage from the Welsh Borderland. This is dominated by rhyniopsids and includes several species of Cooksonia and Salopella . Spores have been isolated from a number of taxa. The assemblage is used to illustrate the problems of recognition and classification of early vascular plants. Parallel sedimentological and palaeogeographical studies permit speculation on the ecology and life histories of the plants that colonized the Old Red Continent. It is concluded that the lack of well preserved and independently dated assemblages from elsewhere in the world (an exception being the Baragwanathia flora of Australia) prevents the detection of any provincialism in the late Silurian and early Devonian and makes generalizations on the early history of vascular plants premature.


Check List ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 317 ◽  
Author(s):  
Gh. Hassan Dar ◽  
Akhtar H. Malik ◽  
Anzar A. Khuroo

The current paper provides a taxonomic inventory of the vascular plant species collected by the authors during the last two decades from the Rajouri and Poonch districts, located along the Pir Panjal range in the Indian Himalayan State of Jammu and Kashmir. The inventory records a total of 352 species, which belong to 270 genera in 83 families. Of the total taxa, the angiosperms are represented by 331 species in 253 genera and 77 families; gymnosperms by 12 species in 9 genera and 3 families; and pteridophytes by 9 species in 7 genera and 3 families. Asteraceae is the largest family, contributing 42 species; while Artemisia is the largest genus, with 5 species. The inventory is expected to provide baseline scientific data for further studies on plant diversity in these two border districts, and can be used to facilitate the long-term conservation and sustainable use of plant resources in this Himalayan region.


Author(s):  
Amy Davis ◽  
Tim Adriaens ◽  
Rozemien De Troch ◽  
Peter Desmet ◽  
Quentin Groom ◽  
...  

To support invasive alien species risk assessments, the Tracking Invasive Alien Species (TrIAS) project has developed an automated, open, workflow incorporating state-of-the-art species distribution modelling practices to create risk maps using the open source language R. It is based on Global Biodiversity Information Facility (GBIF) data and openly published environmental data layers characterizing climate and land cover. Our workflow requires only a species name and generates an ensemble of machine-learning algorithms (Random Forest, Boosted Regression Trees, K-Nearest Neighbors and AdaBoost) stacked together as a meta-model to produce the final risk map at 1 km2 resolution (Fig. 1). Risk maps are generated automatically for standard Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emission scenarios and are accompanied by maps illustrating the confidence of each individual prediction across space, thus enabling the intuitive visualization and understanding of how the confidence of the model varies across space and scenario (Fig. 2). The effects of sampling bias are accounted for by providing options to: use the sampling effort of the higher taxon the modelled species belongs to (e.g., vascular plants), and to thin species occurrences. use the sampling effort of the higher taxon the modelled species belongs to (e.g., vascular plants), and to thin species occurrences. The risk maps generated by our workflow are defensible and repeatable and provide forecasts of alien species distributions under further climate change scenarios. They can be used to support risk assessments and guide surveillance efforts on alien species in Europe. The detailied modeling framework and code are available on GitHub: https://github.com/trias-project.


2018 ◽  
Vol 5 (3) ◽  
pp. 218-223 ◽  
Author(s):  
M.H. Glantz

The notion of «the water world we want» is a spin-off of the United Nations campaign The World We Want. It is open to subjective interpretation, as people have different perceptions of a desired future. Each person or organization is likely to identify their own set of key concerns: food, clean (uncontaminated) water, sustained agricultural productivity, sustainable use of land and ocean resources, healthy lives and secure livelihoods. But whatever utopian world view one creates, it cannot be achieved without adequate sustained water supplies.In 2009, the then United Nations Secretary-General Ban Ki-Moon noted: It is well known that water is life; what this Report shows is that water also means livelihoods. It is the route out of poverty for individuals and communities. Managing water is essential if the world is to achieve sustainable development.This challenge is even more pressing as the world confronts the triple threats of climate change, rising food and energy costs, and the global economic crisis. All three are exacerbating poverty, inequality and underdevelopment.It is apparent that climate, water and weather-related concerns are mounting. Societies are becoming increasingly aware that impacts of extreme hydrometeorological events expected to occur in, say, the 2050s are starting to appear decades earlier. These extreme events — related to climate change — are likely to increase in frequency, intensity and severity. 


2010 ◽  
Vol 10 (4) ◽  
pp. 205-213 ◽  
Author(s):  
Silvana Masciadri ◽  
Ernesto Brugnoli ◽  
Pablo Muniz

In Uruguay, as well as in other regions of the world, IAS cause negative impacts on natural and managed ecosystems. The use of databases is a helpful tool to elaborate different strategies for prevention and control, and to develop policies and scientific analyses related to IAS. The database of IAS in Uruguay (InBUy) was developed during two time periods (2006-2007 and 2009-2010). It currently contains information on 33 specialists of different taxonomic groups, 14 research projects, 185 references, 351 species and 4,715 records, with vascular plants having both the highest number of species and records. Among vascular plants, herbaceous life forms are the most strongly represented, followed by trees and shrubs. Within animals, the fishes and mollusks are the most important groups. Analysis of the native distribution areas of IAS showed that most are indigenous from Europe, followed by Asia and Oceania. Data showed that introductions of IAS into Uruguay are mainly intentional (67%), so efforts should be focused on policies and rules in order to control the entrance of exotic organisms and prevent new invasions. The geography of the compiled dataset shows the main impact is along the coastline, where the highest exotic species richness and records occurs, and also the most biological invasions. The InBUy database is up-to-date and has successfully contributed to the creation of an official IAS list for Uruguay and both a National and a Coastal Geographic Information System. It has also been used for developing consciousness about this important threat to biodiversity, at both national and regional scales.


PEDIATRICS ◽  
1977 ◽  
Vol 60 (6) ◽  
pp. 797-804
Author(s):  
Myron E. Wegman

Data for this article, as in previous reports,1 are drawn principally from the Monthly Vital Statistics Report,2-5 published by the National Center for Health Statistics. The international data come from the Demographic Yearbook6 and the quarterly Population and Vital Statistics Report,7 both published by the Statistical Office of the United Nations, and the World Health Statistics Report,8 published by the World Health Organization. All the United States data for 1976 are estimates by place of occurrence based upon a 10% sample of material received in state offices between two dates, one month apart, regardless of when the event occurred. Experience has shown that for the country as a whole the estimate is very close to the subsequent final figures.


Author(s):  
Joanne C. Burgess

Biological diversity refers to the variety of life on Earth, in all its forms and interactions. Biological diversity, or biodiversity for short, is being lost at an unprecedented rate. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species estimates that 25% of mammals, 41% of amphibians, 33% of reef building corals, and 13% of birds are threatened with extinction. These biodiversity benefits are being lost due to conversion of natural habitat, overharvesting, pollution, invasive species, and climate change. The loss of biodiversity is important because it provides many critical resources, services, and ecosystem functions, such as foods, medicines, clean air, and storm protection. Biodiversity loss and ecosystem collapse pose a major risk to human societies and economic welfare. The Convention on Biological Diversity (CBD) was established in 1992 at the United Nations Conference on Environment and Development (the Rio “Earth Summit”) and enacted in 1993. The international treaty aims to conserve biodiversity and ensure the sustainable use of the components of biodiversity and the equitable sharing of the benefits derived from the use of genetic resources. The CBD has near universal global participation with 196 parties signatory to the treaty. The non-legally binding commitments established in 2010 by the CBD are known as the Aichi Targets. They include the goal of conserving at least 17% of terrestrial and inland water habitats and 10% of coastal and marine areas by 2020. Biodiversity continues to decline at an unprecedented rate and the world faces “biological annihilation” and a sixth mass extinction event. There are several underlying causes of the continuing loss of biodiversity that need to be addressed. First, the CBD Aichi Targets are not ambitious enough and should be extended to protect as much as 50% of the terrestrial realm for biodiversity. Second, it is difficult to place an economic value on the range of direct, indirect, and nonuse values of biodiversity. The failure to take into account the full economic value of biodiversity in prices, projects, and policy decisions means that biodiversity is often misused and overused. Third, biodiversity is a global public good and displays nonrival and nonexcludable characteristics. Because of this, it is difficult to raise sufficient funds for conservation and to channel these funds to cover local conservation costs. In particular, much of the world’s biodiversity is located in (mainly tropical) developing countries, and they do not have the incentive or the funds to spend the money to “save” enough biodiversity on behalf of the rest of the world. The funding for global biodiversity conservation is $4–$10 billion annually, whereas around $100 billion a year is needed to protect the Earth’s broad range of animal and plant species. This funding gap undermines CBD’s conservation efforts. Governments and international organizations have been unable to raise the investments needed to reverse the decline in biological populations and habitats on land and in oceans. There is an important role for private-sector involvement in the CBD to endorse efforts for more sustainable use of biodiversity and to contribute funds to finance conservation and habitat protection efforts.


2020 ◽  
Vol 24 ◽  
pp. 00042
Author(s):  
Nataliya Kovtonyuk ◽  
Irina Han ◽  
Evgeniya Gatilova ◽  
Nikolai Friesen

Two herbarium collections (NS and NSK) of the Central Siberian Botanical Garden SB RAS keep about 740,000 specimens of vascular plants, collected in Siberia, Russian Far East, Europe, Asia and North America. Genus Allium s. lat. Is presented by 6224 herbarium sheets, all of them were scanned using international standards: at a resolution of 600 dpi, the barcode for each specimen, 24-color scale and scale bar. Images and metadata are stored at the CSBG SB RAS Digital Herbarium, generated by ScanWizard Botany and MiVapp Botany software (Microtek, Taiwan). Datasets were published via IPT at the Global Biodiversity Information Facility portal (gbif.org). In total 207 species of the genus Allium are placed in the CSBS Digital Herbarium, which includes representatives from 13 subgenera and 49 sections of the genus. 35 type specimens of 18 species and subspecies of the genus Allium are hosted in CSBG Herbarium collections.


Sign in / Sign up

Export Citation Format

Share Document