scholarly journals ADAM10 is Expressed by Ameloblasts, Cleaves the RELT TNF Receptor Extracellular Domain and Facilitates Enamel Development

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Atsushi Ikeda ◽  
Shifa Shahid ◽  
Benjamin R. Blumberg ◽  
Maiko Suzuki ◽  
John D. Bartlett

Abstract MMP20 cleaves cadherins and may facilitate cell movement, however MMP20 is not known to cleave tight junction or desmosome proteins. Ameloblasts had not previously been screened for membrane anchored proteases that could contribute to cell movement. Here we performed a PCR screen for proteolyticlly active A Disintegrin And Metalloproteinase (ADAM) family members. These proteinases are termed sheddases because they have a transmembrane domain and their catalytic domain on the cell surface can function to release anchored proteins. Significantly, ADAMs can be targeted to specific substrates on the cell membrane through their interaction with tetraspanins. Six ADAMs (ADAM8, 9, 10, 15, 17, 19) were expressed in mouse enamel organs. We show that Adam10 expression begins in the apical loop, continues through the secretory stage and abruptly ends at the transition stage when ameloblast migration ceases. ADAM10 cleaves cadherins and tight junction plus desmosome proteins and is well characterized for its role in cell movement. ADAM10 facilitated LS8 cell migration/invasion through a Matrigel coated membrane and we demonstrate that ADAM10, but not ADAM17 cleaves the RELT extracellular domain. This striking result is significant because RELT mutations cause amelogenesis imperfecta (AI) and this directly links ADAM10 to an important role in enamel development.

1986 ◽  
Vol 6 (9) ◽  
pp. 3109-3116 ◽  
Author(s):  
C Birchmeier ◽  
D Birnbaum ◽  
G Waitches ◽  
O Fasano ◽  
M Wigler

A human oncogene, mcf3, previously detected by a combination of DNA-mediated gene transfer and a tumorigenicity assay, derives from a human homology of the avian v-ros oncogene. Both v-ros and mcf3 can encode a protein with homology to tyrosine-specific protein kinases, and both mcf3 and v-ros encode a potential transmembrane domain N terminal to the kinase domain. mcf3 probably arose during gene transfer from a normal human ros gene by the loss of a putative extracellular domain. There do not appear to be any other gross rearrangements in the structure of mcf3.


2001 ◽  
Vol 114 (24) ◽  
pp. 4629-4635
Author(s):  
Michel J. Massaad ◽  
Annette Herscovics

The α1,2-mannosidase Mns1p involved in the N-glycosidic pathway in Saccharomyces cerevisiae is a type II membrane protein of the endoplasmic reticulum. The localization of Mns1p depends on retrieval from the Golgi through a mechanism that involves Rer1p. A chimera consisting of the transmembrane domain of Mns1p fused to the catalytic domain of the Golgi α1,2-mannosyltransferase Kre2p was localized in the endoplasmic reticulum of Δpep4 cells and in the vacuoles of rer1/Δpep4 by indirect immunofluorescence. The split-ubiquitin system was used to determine if there is an interaction between Mns1p and Rer1p in vivo. Co-expression of NubG-Mns1p and Rer1p-Cub-protein A-lexA-VP16 in L40 yeast cells resulted in cleavage of the reporter molecule, protein A-lexA-VP16, detected by western blot analysis and by expression of β-galactosidase activity. Sec12p, another endoplasmic reticulum protein that depends on Rer1p for its localization, also interacted with Rer1p using the split-ubiquitin assay, whereas the endoplasmic reticulum protein Ost1p showed no interaction. A weak interaction was observed between Alg5p and Rer1p. These results demonstrate that the transmembrane domain of Mns1p is sufficient for Rer1p-dependent endoplasmic reticulum localization and that Mns1p and Rer1p interact. Furthermore, the split-ubiquitin system demonstrates that the C-terminal of Rer1p is in the cytosol.


2018 ◽  
Author(s):  
Yunxiao Zhang ◽  
David P. Bulkley ◽  
Kelsey J. Roberts ◽  
Yao Xin ◽  
Daniel E. Asarnow ◽  
...  

AbstractHedgehog protein signals mediate tissue patterning and maintenance via binding to and inactivation of their common receptor Patched, a twelve-transmembrane protein that otherwise would suppress activity of the seven-transmembrane protein, Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. The extracellular domain mediates association of Patched monomers in an unusual dimeric architecture that implies curvature in the associated membrane. A central conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Patched expression indeed reduces cholesterol activity in the inner leaflet of the plasma membrane, in a manner antagonized by Hedgehog stimulation and with implications for regulation of Smoothened.


1996 ◽  
Vol 271 (5) ◽  
pp. C1678-C1684 ◽  
Author(s):  
G. Hecht ◽  
L. Pestic ◽  
G. Nikcevic ◽  
A. Koutsouris ◽  
J. Tripuraneni ◽  
...  

Contractile events resulting from phosphorylation of the 20-kDa myosin light chain (MLC20) have been implicated in the regulation of epithelial tight junction permeability. To address this question, Madin-Darby canine kidney cells were transfected with a murine leukemia retroviral vector containing DNA encoding either the catalytic domain of myosin light chain kinase (tMK) or the beta-galactosidase gene (beta-gal). Autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of myosin immunoprecipitated from 32Pi-labeled transfected cells demonstrated that MLC20 phosphorylation was increased 3.1 +/- 0.9-fold in cells expressing tMK compared with cells expressing beta-gal. Phosphopeptide mapping confirmed that myosin light chain kinase was responsible for the increased MLC20 phosphorylation. Transepithelial electrical resistance, a measurement of barrier function, of tMK cell monolayers was consistently < 10% (123 +/- 20 omega.cm2) of that of monolayers comprised of wild-type cells (1,456 +/- 178 omega.cm2) or cells expressing beta-gal (1,452 +/- 174 omega.cm2). Dual 22Na+ and [3H]mannitol flux studies indicated that the decrease in resistance in tMK cells was attributable to increased paracellular flow. These data support the idea that MLC20 phosphorylation by myosin light chain kinase is involved in regulating epithelial tight junction permeability.


2003 ◽  
Vol 371 (2) ◽  
pp. 321-330 ◽  
Author(s):  
Rik GIJSBERS ◽  
Hugo CEULEMANS ◽  
Mathieu BOLLEN

The ubiquitous nucleotide pyrophosphatases/phosphodiesterases NPP1–3 consist of a short intracellular N-terminal domain, a single transmembrane domain and a large extracellular part, comprising two somatomedin-B-like domains, a catalytic domain and a poorly defined C-terminal domain. We show here that the C-terminal domain of NPP1–3 is structurally related to a family of DNA/RNA non-specific endonucleases. However, none of the residues that are essential for catalysis by the endonucleases are conserved in NPP1–NPP3, suggesting that the nuclease-like domain of NPP1–3 does not represent a second catalytic domain. Truncation analysis revealed that the nuclease-like domain of NPP1 is required for protein stability, for the targeting of NPP1 to the plasma membrane and for the expression of catalytic activity. We also demonstrate that 16 conserved cysteines in the somatomedin-B-like domains of NPP1, in concert with two flanking cysteines, mediate the dimerization of NPP1. The K173Q polymorphism of NPP1, which maps to the second somatomedin-B-like domain and has been associated with the aetiology of insulin resistance, did not affect the dimerization or catalytic activity of NPP1, and did not endow NPP1 with an affinity for the insulin receptor. Our data suggest that the non-catalytic ectodomains contribute to the subunit structure, stability and function of NPP1–3.


2017 ◽  
Vol 28 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Rashmi Priya ◽  
Xuan Liang ◽  
Jessica L. Teo ◽  
Kinga Duszyc ◽  
Alpha S. Yap ◽  
...  

Rho kinases (ROCK1 and ROCK2) function downstream of the small GTPase RhoA to drive actomyosin cytoskeletal remodeling. It has often been believed that ROCK1 and ROCK2 may be functionally redundant, as they share a highly conserved kinase domain. However, in this study, we report differential functional effects for these ROCKs at the epithelial zonula adherens (ZA). Using specific siRNA, we found that ROCK1 depletion disrupted cadherin organization at the ZA, accompanied by loss of F-actin and NMIIA, whereas ROCK2 knockdown had no significant effect. Further, ROCK1, but not ROCK2, was necessary to stabilize GTP-RhoA at the ZA, thereby sustaining junctional tension and inhibiting intraepithelial cell movement. We also found that nonmuscle myosin IIA is a major determinant of ROCK1 cortical stability. Thus, despite sharing the catalytic domain with ROCK2, ROCK1 appears to be the dominant kinase essential for junctional integrity and contractile tension at epithelial ZA.


2005 ◽  
Vol 152 (4) ◽  
pp. 625-634 ◽  
Author(s):  
Susanne Neumann ◽  
Maren Claus ◽  
Ralf Paschke

Objective: The molecular mechanisms of TSH receptor (TSHR) activation and intramolecular signal transduction are largely unknown. Deletion of the extracellular domain (ECD) of the TSHR results in increased constitutive activity, which suggests a self-inhibitory interaction between the ECD and the extracellular loops (ECLs) or the transmembrane domains (TMDs). To investigate these potential interactions and to pursue the idea that mutations in the ECD affect the constitutive activity of mutants in the ECLs or TMDs we generated double mutants between position 281 in the ECD and mutants in all three ECLs as well as the 6th TMD. Design: We combined mutation S281D, characterized by an impaired TSH-stimulated cAMP response, with the constitutively activating in vivo mutations I486F (1st ECL), I568T (2nd ECL), V656F (3rd ECL) and D633F (6th TMD). Further, we constructed double mutants containing the constitutively activating mutation S281N and one of the inactivating mutations D474E, T477I (1st ECL) and D633K (6th TMD). Results: The cAMP level of the double mutants with S281N and the inactive mutants in the 1st ECL was decreased below the level of the inactive single mutants, demonstrating that a constitutively activating mutation in the ECD cannot bypass disruption of signal transduction in the serpentine domain. In double mutants with S281D, basal and TSH-induced cAMP and inositol phosphate production of constitutively active mutants was reduced to the level of S281D. Conclusion: The dominance of S281D and the dependence of constitutively activating mutations in the ECLs on the functionally intact ECD strongly suggest that interactions between these receptor domains are required for TSHR activation and intramolecular signal transduction.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1641-1641
Author(s):  
Li Zhu ◽  
Wolfgang Bergmeier ◽  
Jie Wu ◽  
Hong Jiang ◽  
Nana Yeboah ◽  
...  

Abstract Proteins that are expressed on the platelet surface can participate in contact-dependent signaling events which modulate thrombus formation or, after being shed from the platelet surface, serve as bioactive messengers that affect the function of nearby cells. Here we show for the first time that platelets express the class IV semaphorin known as sema4D or CD100, and that platelet activation causes the regulated shedding of the sema4D extracellular domain in a biologically-active form. Sema4D is a glycosylated 150 kDa disulfide-linked homodimer that has previously been implicated in interactions between T-cells and B-cells. Platelet activation by collagen, thrombin or PMA causes a transient increase in sema4D surface expression peaking at 15 min, followed by a complete loss of expression over 30–60 minutes. These events are accompanied by the release of the sema4D exodomain as a 130 kDa fragment, leaving a 25–30 kDa transmembrane and cytoplasmic domain fragment that is retained by the platelets. The cleavage event required to produce these fragments is inhibited by metalloprotease inhibitors and abolished in platelets from chimeric mice lacking the metalloprotease known as ADAM17 or TACE (TNF alpha converting enzyme). Incubation of recombinant sema4D with ADAM17 identified a single cleavage site just outside the predicted transmembrane domain. Western blots show that human platelets express ADAM17 in both its immature (zymogen) and mature (active) forms, and indicate that at least some of the ADAM17 is located on the platelet surface. ADAM17-dependent cleavage of sema4D does not require platelet aggregation, but the rate is accelerated when aggregation is allowed to occur and slowed when aggregation is prevented. Under both sets of conditions, cleavage of sema4D occurs to a greater extent and more rapidly than the ADAM17-dependent cleavage of GP Ib alpha, suggesting that there is a hierarchy of proteolytic events when platelets are activated. In terms of biological impact, the shedding of sema4D following platelet activation raises the possibility that the soluble extracellular domain of sema4D serves as a bioactive messenger. Two receptors for sema4D have been identified previously: CD72, which is present on lymphocytes where it regulates the activity of the tyrosine phosphatase, SHP-1, and plexin-B1, which is expressed in endothelial cells. Western blots suggest that both of these receptors are expressed on human platelets and show that SHP-1 is associated with CD72 in resting, but not activated platelets. Taken together, these results demonstrate that sema4D undergoes regulated ADAM17-dependent shedding when platelets are activated, and suggest that this results in the production of a bioactive form of the molecule that can affect responses in nearby platelets, lymphocytes and endothelial cells at sites of thrombosis.


Sign in / Sign up

Export Citation Format

Share Document