scholarly journals The functional ClpXP protease of Chlamydia trachomatis requires distinct clpP genes from separate genetic loci

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stefan Pan ◽  
Imran T. Malik ◽  
Dhana Thomy ◽  
Beate Henrichfreise ◽  
Peter Sass

Abstract Clp proteases play a central role in bacterial physiology and, for some bacterial species, are even essential for survival. Also due to their conservation among bacteria including important human pathogens, Clp proteases have recently attracted considerable attention as antibiotic targets. Here, we functionally reconstituted and characterized the ClpXP protease of Chlamydia trachomatis (ctClpXP), an obligate intracellular pathogen and the causative agent of widespread sexually transmitted diseases in humans. Our in vitro data show that ctClpXP is formed by a hetero-tetradecameric proteolytic core, composed of two distinct homologs of ClpP (ctClpP1 and ctClpP2), that associates with the unfoldase ctClpX via ctClpP2 for regulated protein degradation. Antibiotics of the ADEP class interfere with protease functions by both preventing the interaction of ctClpX with ctClpP1P2 and activating the otherwise dormant proteolytic core for unregulated proteolysis. Thus, our results reveal molecular insight into ctClpXP function, validating this protease as an antibacterial target.

2005 ◽  
Vol 187 (18) ◽  
pp. 6466-6478 ◽  
Author(s):  
Kenneth A. Fields ◽  
Elizabeth R. Fischer ◽  
David J. Mead ◽  
Ted Hackstadt

ABSTRACT The obligate intracellular pathogen Chlamydia trachomatis expresses a type III secretion system (T3SS) which has the potential to contribute significantly to pathogenesis. Based on a demonstrated role of type III secretion (T3S)-specific chaperones in the secretion of antihost proteins by gram-negative pathogens, we initiated a study of selected putative Chlamydia T3S chaperones in an effort to gain mechanistic insight into the Chlamydia T3SS and to potentially identify Chlamydia-specific secreted products. C. trachomatis Scc2 and Scc3 are homologous to SycD of Yersinia spp. Functional studies of the heterologous Yersinia T3SS indicated that although neither Scc2 nor Scc3 was able to fully complement a sycD null mutant, both have SycD-like characteristics. Both were able to associate with the translocator protein YopD, and Scc3 expression restored limited secretion of YopD in in vitro studies of T3S. CopB (CT578) and CopB2 (CT861) are encoded adjacent to scc2 and scc3, respectively, and have structural similarities with the YopB family of T3S translocators. Either Scc2 or Scc3 coprecipitates with CopB from C. trachomatis extracts. Expression of CopB or CopB2 in Yersinia resulted in their type III-dependent secretion, and localization studies with C. trachomatis-infected cells indicated that both were secreted by Chlamydia.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Rosa Sessa ◽  
Marisa Di Pietro ◽  
Fiorenzo De Santis ◽  
Simone Filardo ◽  
Rino Ragno ◽  
...  

Chlamydia trachomatis, the most common cause of sexually transmitted bacterial infection worldwide, has a unique biphasic developmental cycle alternating between the infectious elementary body and the replicative reticulate body.C. trachomatisis responsible for severe reproductive complications including pelvic inflammatory disease, ectopic pregnancy, and obstructive infertility. The aim of our study was to evaluate whetherMentha suaveolensessential oil (EOMS) can be considered as a promising candidate for preventingC. trachomatisinfection. Specifically, we investigated thein vitroeffects of EOMS towardsC. trachomatisanalysing the different phases of chlamydial developmental cycle. Our results demonstrated that EOMS was effective towardsC. trachomatis, whereby it not only inactivated infectious elementary bodies but also inhibited chlamydial replication. Our study also revealed the effectiveness of EOMS, in combination with erythromycin, towardsC. trachomatiswith a substantial reduction in the minimum effect dose of antibiotic. In conclusion, EOMS treatment may represent a preventative strategy since it may reduceC. trachomatistransmission in the population and, thereby, reduce the number of new chlamydial infections and risk of developing of severe sequelae.


1993 ◽  
Vol 1 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Sebastian Faro

The most commonly sexually transmitted bacteria areNeisseria gonorrhoeaeandChlamydia trachomatis.The quinolones ofloxacin and ciprofloxacin have been shown to have activity against both of these bacteria in vitro and in vivo. Ofloxacin is particularly well suited for the treatment ofN. gonorrhoeaeandC. trachomatiscervical infection, which can be considered the earliest manifestation of pelvic inflammatory disease (PID). Not only can ofloxacin be effectively used as a single agent, it is also useful in treating urinary tract infections caused by Enterobacteriaceae. Although it has moderate activity against anaerobes in general, ofloxacin does have activity against the anaerobes commonly isolated from female patients with soft tissue pelvic infections. Thus, ofloxacin has the potential for being utilized to treat early salpingitis.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Susanne Paukner ◽  
Astrid Gruss ◽  
Jørgen Skov Jensen

ABSTRACT The pleuromutilin antibiotic lefamulin demonstrated in vitro activity against the most relevant bacterial pathogens causing sexually transmitted infections (STI), including Chlamydia trachomatis (MIC 50/90 , 0.02/0.04 mg/liter; n = 15), susceptible and multidrug-resistant Mycoplasma genitalium (MIC range, 0.002 to 0.063 mg/liter; n = 6), and susceptible and resistant Neisseria gonorrhoeae (MIC 50/90 , 0.12/0.5 mg/liter; n = 25). The results suggest that lefamulin could be a promising first-line antibiotic for the treatment of STI, particularly in populations with high rates of resistance to standard-of-care antibiotics.


2018 ◽  
Vol 36 (06) ◽  
pp. 340-350 ◽  
Author(s):  
Christine Nadeau ◽  
Dennis Fujii ◽  
Jessica Lentscher ◽  
Amanda Haney ◽  
Richard Burney

Abstract Chlamydia trachomatis is the most common sexually transmitted bacterial infection in the United States. Within the U.S. military, the age- and race-adjusted chlamydia infection rates among female service members are consistently higher than civilian rates, with a 20% annual acquisition rate among young active-duty women. The sequelae of chlamydia disproportionately impact women in terms of severity and cost. Untreated chlamydia progresses to pelvic inflammatory disease in 40% of cases, and is a leading cause of fallopian tube damage and pelvic adhesive disease resulting in ectopic pregnancy, tubal infertility, and acute and chronic pelvic pain. Tubal infertility is among the leading indications for in vitro fertilization (IVF) nationally and rates among couples undergoing IVF at military treatment centers are double the national average. Collectively, chlamydia infection represents a significant resource burden to the military health care system and, in view of the serious gynecologic health sequelae, a significant threat to the readiness of servicewomen. In this review, we discuss the gynecologic impact of chlamydia infection within the military, the critical gaps for research funding, and opportunities for intervention.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Bernard China ◽  
Kris Vernelen

Chlamydia trachomatis is a major cause of sexually transmitted bacterial disease worldwide. C. trachomatis is an intracellular bacterium and its growth in vitro requires cell culture facilities. The diagnosis is based on antigen detection and more recently on molecular nucleic acid amplification techniques (NAAT) that are considered fast, sensitive, and specific. In Belgium, External Quality Assessment (EQA) for the detection of C. trachomatis in urine by NAAT was introduced in 2008. From January 2008 to June 2012, nine surveys were organized. Fifty-eight laboratories participated in at least one survey. The EQA panels included positive and negative samples. The overall accuracy was 75.4%, the overall specificity was 97.6%, and the overall sensitivity was 71.4%. Two major issues were observed: the low sensitivity (45.3%) for the detection of low concentration samples and the incapacity of several methods to detect the Swedish variant of C. trachomatis. The reassuring point was that the overall proficiency of the Belgian laboratories tended to improve over time.


2017 ◽  
Vol 95 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Rosa Sessa ◽  
Marisa Di Pietro ◽  
Simone Filardo ◽  
Alessia Bressan ◽  
Luigi Rosa ◽  
...  

Chlamydia trachomatis is an obligate, intracellular pathogen responsible for the most common sexually transmitted bacterial disease worldwide, causing acute and chronic infections. The acute infection is susceptible to antibiotics, whereas the chronic one needs prolonged therapies, thus increasing the risk of developing antibiotic resistance. Novel alternative therapies are needed. The intracellular development of C. trachomatis requires essential nutrients, including iron. Iron-chelating drugs inhibit C. trachomatis developmental cycle. Lactoferrin (Lf), a pleiotropic iron binding glycoprotein, could be a promising candidate against C. trachomatis infection. Similarly to the efficacy against other intracellular pathogens, bovine Lf (bLf) could both interfere with C. trachomatis entry into epithelial cells and exert an anti-inflammatory activity. In vitro and in vivo effects of bLf against C. trachomatis infectious and inflammatory process has been investigated. BLf inhibits C. trachomatis entry into host cells when incubated with cell monolayers before or at the moment of the infection and down-regulates IL-6/IL-8 synthesized by infected cells. Six out of 7 pregnant women asymptomatically infected by C. trachomatis, after 30 days of bLf intravaginal administration, were negative for C. trachomatis and showed a decrease of cervical IL-6 levels. This is the first time that the bLf protective effect against C. trachomatis infection has been demonstrated.


2002 ◽  
Vol 46 (1) ◽  
pp. 34-41 ◽  
Author(s):  
L. M. Ballweber ◽  
J. E. Jaynes ◽  
W. E. Stamm ◽  
M. F. Lampe

ABSTRACT Topically applied microbicides that eradicate pathogens at the time of initial exposure represent a powerful strategy for the prevention of sexually transmitted infections. To aid in the further development of an effective topical microbicide, we assessed the minimum cidal concentration (MCC) of two cecropin peptides, D2A21 and D4E1, and gel formulations containing 0.1 to 2% D2A21 against Chlamydia trachomatis in vitro. The MCC of peptide D2A21was 5 μM (18.32 μg/ml), and that of peptide D4E1 was 7.5 μM (21.69 μg/ml). The MCC of gel formulations containing 2% D2A21 was 0.2 mM (0.7 mg/ml), and that of gel formulations containing 0.5% D2A21 was 0.2 mM (0.7 mg/ml). There was no significant variation in the results when two different C. trachomatis strains were tested, and the addition of 10% human blood did not significantly alter the MCCs. pH values above and below 7 reduced the activity of the D2A21 peptide alone, but the MCC of the 2% D2A21 gel formulation was only slightly altered at the various pHs tested. Ultrastructural studies indicated that C. trachomatis membranes were disrupted after D2A21 exposure, resulting in leakage of the cytoplasmic contents. These in vitro results suggest that these cecropin peptides may be an effective topical microbicide against C. trachomatis and support the need for further evaluation.


2021 ◽  
Vol 9 (9) ◽  
pp. 1864
Author(s):  
Shu-Fang Chiu ◽  
Po-Jung Huang ◽  
Wei-Hung Cheng ◽  
Ching-Yun Huang ◽  
Lichieh Julie Chu ◽  
...  

The three most common sexually transmitted infections (STIs) are Chlamydia trachomatis (CT), Neisseria gonorrhoeae (GC) and Trichomonas vaginalis (TV). The prevalence of these STIs in Taiwan remains largely unknown and the risk of STI acquisition affected by the vaginal microbiota is also elusive. In this study, a total of 327 vaginal swabs collected from women with vaginitis were analyzed to determine the presence of STIs and the associated microorganisms by using the BD Max CT/GC/TV molecular assay, microbial cultures, and 16S rRNA sequencing. The prevalence of CT, TV, and GC was 10.8%, 2.2% and 0.6%, respectively. A culture-dependent method identified that Escherichia coli and Streptococcus agalactiae (GBS) were more likely to be associated with CT and TV infections. In CT-positive patients, the vaginal microbiota was dominated by L. iners, and the relative abundance of Gardnerella vaginalis (12.46%) was also higher than that in TV-positive patients and the non-STIs group. However, Lactobacillus spp. was significantly lower in TV-positive patients, while GBS (10.11%), Prevotella bivia (6.19%), Sneathia sanguinegens (12.75%), and Gemella asaccharolytica (5.31%) were significantly enriched. Using an in vitro co-culture assay, we demonstrated that the growth of L. iners was suppressed in the initial interaction with TV, but it may adapt and survive after longer exposure to TV. Additionally, it is noteworthy that TV was able to promote GBS growth. Our study highlights the vaginal microbiota composition associated with the common STIs and the crosstalk between TV and the associated bacteria, paving the way for future development of health interventions targeting the specific vaginal bacterial taxa to reduce the risk of common STIs.


2017 ◽  
Vol 114 (19) ◽  
pp. 4948-4953 ◽  
Author(s):  
Qinghua Zhu ◽  
Qi Chen ◽  
Yongxiang Song ◽  
Hongbo Huang ◽  
Jun Li ◽  
...  

Galactose, a monosaccharide capable of assuming two possible configurational isomers (d-/l-), can exist as a six-membered ring, galactopyranose (Galp), or as a five-membered ring, galactofuranose (Galf). UDP-galactopyranose mutase (UGM) mediates the conversion of pyranose to furanose thereby providing a precursor for d-Galf. Moreover, UGM is critical to the virulence of numerous eukaryotic and prokaryotic human pathogens and thus represents an excellent antimicrobial drug target. However, the biosynthetic mechanism and relevant enzymes that drive l-Galf production have not yet been characterized. Herein we report that efforts to decipher the sugar biosynthetic pathway and tailoring steps en route to nucleoside antibiotic A201A led to the discovery of a GDP-l-galactose mutase, MtdL. Systematic inactivation of 18 of the 33 biosynthetic genes in the A201A cluster and elucidation of 10 congeners, coupled with feeding and in vitro biochemical experiments, enabled us to: (i) decipher the unique enzyme, GDP-l-galactose mutase associated with production of two unique d-mannose-derived sugars, and (ii) assign two glycosyltransferases, four methyltransferases, and one desaturase that regiospecifically tailor the A201A scaffold and display relaxed substrate specificities. Taken together, these data provide important insight into the origin of l-Galf-containing natural product biosynthetic pathways with likely ramifications in other organisms and possible antimicrobial drug targeting strategies.


Sign in / Sign up

Export Citation Format

Share Document