scholarly journals A non-calorimetric approach for investigating the moisture-induced ageing of a pyrotechnic delay material using spectroscopies

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ji-Hoon Ryu ◽  
Jun-Ho Yang ◽  
Jack J. Yoh

Abstract The degradation of thermal properties due to ageing such as burning rate and exothermic heat release are unsolved issues faced during a long-term storage of the pyrotechnic substances. Accordingly, we employed various non-calorimetric methods to investigate the thermal performance of pyrotechnic delay, which is exposed to various moisture-rich conditions at extended durations. The chemical and physical changes in the compositions of a pyrotechnic delay comprised of metal fuel (Zr-Ni alloy) and oxidants (KClO4, BaCrO4) are analysed for four different relative humidity levels using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope and laser-induced breakdown spectroscopy. The calculations using the NASA Chemical Equilibrium with Applications (CEA) software indicated that the heat of reaction for the components stored under the moisture-rich conditions is reduced by more than 50%. Unlike the conventional calorimetric analysis, the present non-calorimetric approach provided the compositional changes as well as the cause and effect of the relevant ageing process of pyrotechnic delay.

2018 ◽  
Vol 73 (2) ◽  
pp. 229-235 ◽  
Author(s):  
Rodolfo Ledesma ◽  
Frank Palmieri ◽  
Brooke Campbell ◽  
William Yost ◽  
James Fitz-Gerald ◽  
...  

Surface treatment and surface characterization techniques are critical to ensure that adherends are chemically activated and free of contaminants before adhesive bonding. Silicone contamination from mold release agents and other sources can interfere with interfacial bonding, decreasing the durability and performance of bonded composite structures. It is necessary to have tools and methods that can be used in a production environment to reliably detect low levels of contaminants in a rapid, simple, and cost-effective manner to improve bond reliability. In this work, surface characterization of carbon fiber reinforced polymer (CFRP) composites with epoxy matrix was performed using laser-induced breakdown spectroscopy (LIBS), and the results were compared with those obtained from X-ray photoelectron spectroscopy (XPS). Laser-induced breakdown spectroscopy offers many advantages over XPS in terms of ease of use, sample preparation, and real-time results. The objective of the comparison was to study the sensitivity of LIBS and to investigate the quantification of the surface species measured by LIBS. Another objective was to assess the reliability of each technique for surface contaminant characterization. The as-processed CFRP panels had trace surface silicone contamination from the fabrication process, the source of which was not investigated. The composites were laser treated at select average laser power levels, resulting in varying levels of contamination reduction. The Si atomic percentage measurements using XPS were conducted on both control and laser-ablated surfaces. The results showed an excellent correlation in Si concentration between the two techniques.


Proceedings ◽  
2021 ◽  
Vol 62 (1) ◽  
pp. 11
Author(s):  
Francesco Capitelli ◽  
Bujar Dida ◽  
Giancarlo Della Ventura ◽  
Francesco Baldassarre ◽  
Davide Capelli ◽  
...  

Stony monuments must continuously be safeguarded from damage caused over time, in particular from the detrimental effects of weathering. One of the new environmentally-friendly (nano) materials for stone reinforcement, particularly suitable for marble and calcareous (limestone, sandstone) artifacts, is Ca10(PO4)6(OH)2 hydroxyapatite (HAp), which has a considerably lower dissolution rate and solubility compared to CaCO3 calcite (the building block of marble materials): thus, HAp has been proposed for the protection of calcareous monuments against acidic rain corrosion. Promising results have been obtained, but further optimization is necessary as the treated layer is often incomplete, cracked and/or porous. Several parameters need to be optimized, in this way a homogeneous layer can be obtained, and consequently the formation of metastable can be avoided, soluble phases instead of HAp. These include: the pH of the starting solution; the effect of organic and inorganic additions in particular, that of ethanol, which is known to adsorb calcite, thus possibly favoring the growth of the HAp layer. The formation of HAp nanoparticles and their application on stony substrates has been investigated by means of a multi-methodological approach based on scanning electron microscopy, x-ray diffraction, small- and/or wide-angle x-ray scattering, Fourier-transform infrared spectroscopy, and finally, in situ measurements of laser-induced breakdown spectroscopy and acid attack preliminary tests on stony substrates.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 346
Author(s):  
Sonam Goyal ◽  
Maizatul Shima Shaharun ◽  
Ganaga Suriya Jayabal ◽  
Chong Fai Kait ◽  
Bawadi Abdullah ◽  
...  

A set of novel photocatalysts, i.e., copper-zirconia imidazolate (CuZrIm) frameworks, were synthesized using different zirconia molar ratios (i.e., 0.5, 1, and 1.5 mmol). The photoreduction process of CO2 to methanol in a continuous-flow stirred photoreactor at pressure and temperature of 1 atm and 25 °C, respectively, was studied. The physicochemical properties of the synthesized catalysts were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The highest methanol activity of 818.59 µmol/L.g was recorded when the CuZrIm1 catalyst with Cu/Zr/Im/NH4OH molar ratio of 2:1:4:2 (mmol/mmol/mmol/M) was employed. The enhanced yield is attributed to the presence of Cu2+ oxidation state and the uniformly dispersed active metals. The response surface methodology (RSM) was used to optimize the reaction parameters. The predicted results agreed well with the experimental ones with the correlation coefficient (R2) of 0.99. The optimization results showed that the highest methanol activity of 1054 µmol/L.g was recorded when the optimum parameters were employed, i.e., stirring rate (540 rpm), intensity of light (275 W/m2) and photocatalyst loading (1.3 g/L). The redox potential value for the CuZrIm1 shows that the reduction potential is −1.70 V and the oxidation potential is +1.28 V for the photoreduction of CO2 to methanol. The current work has established the potential utilization of the imidazolate framework as catalyst support for the photoreduction of CO2 to methanol.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Valentina Krylova ◽  
Mindaugas Andrulevičius

Copper sulfide layers were formed on polyamide PA 6 surface using the sorption-diffusion method. Polymer samples were immersed for 4 and 5 h in 0.15 mol⋅  solutions and acidified with HCl (0.1 mol⋅) at . After washing and drying, the samples were treated with Cu(I) salt solution. The samples were studied by UV/VIS, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. All methods confirmed that on the surface of the polyamide film a layer of copper sulfide was formed. The copper sulfide layers are indirect band-gap semiconductors. The values of are 1.25 and 1.3 eV for 4 h and 5 h sulfured PA 6 respectively. Copper XPS spectra analyses showed Cu(I) bonds only in deeper layers of the formed film, while in sulfur XPS S 2p spectra dominating sulfide bonds were found after cleaning the surface with ions. It has been established by the XRD method that, beside , the layer contains as well. For PA 6 initially sulfured 4 h, grain size forchalcocite, , was  nm and fordjurleite, , it was 54.17 nm. The sheet resistance of the obtained layer varies from 6300 to 102 .


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Pawel Mierczynski ◽  
Magdalena Mosińska ◽  
Lukasz Szkudlarek ◽  
Karolina Chalupka ◽  
Misa Tatsuzawa ◽  
...  

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.


Sign in / Sign up

Export Citation Format

Share Document