scholarly journals Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Umakanta Sarker ◽  
Shinya Oba

AbstractRed color (A. tricolor) genotypes are an excellent source of pigments, such as betalain (1122.47 ng g−1 FW), β-xanthin (585.22 ng g−1 FW), β-cyanin (624.75 ng g−1 FW), carotenoids (55.55 mg 100 g−1 FW), and antioxidant phytochemicals, such as vitamin C (122.43 mg 100 g−1 FW), TFC (312.64 RE µg g−1 DW), TPC (220.04 GAE µg g−1 DW), TAC (DPPH and ABTS+) (43.81 and 66.59 TEAC µg g−1 DW) compared to green color (A. lividus) genotype. Remarkable phenolic acids, such as salicylic acid, vanillic acid, protocatechuic acid, gallic acid, gentisic acid, β-resorcylic acid, p-hydroxybenzoic acid, syringic acid, ellagic acid, chlorogenic acid, sinapic acids, trans-cinnamic acid, m-coumaric acid, caffeic acid, p-coumaric acid, ferulic acid, and flavonoids, such as rutin, hyperoside, isoquercetin, myricetin, quercetin, apigenin, kaempferol, and catechin were observed in the red color amaranth genotypes, which was much higher compared to the green color amaranth genotype. We newly identified four flavonoids such as quercetin, catechin, myricetin, and apigenin in amaranth. Among the three selected advanced genotypes studied the red color genotype VA13 and VA3 had abundant antioxidant pigments, phytochemicals, phenolic acids, flavonoids, and antioxidant activity could be selected for extracting colorful juice. Correlation study revealed that all antioxidant constituents of red color amaranth had strong antioxidant activity. The present investigation revealed that two red color genotypes had an excellent source of antioxidants that demand detail pharmacological study.

2020 ◽  
Vol 48 (3) ◽  
pp. 1543-1559
Author(s):  
Bozena PRUSOVA ◽  
Josef LICEK ◽  
Michal KUMSTA ◽  
Mojmir BARON ◽  
Jiri SOCHOR

This study is focused on the study of polyphenolic compounds in grape stems as by-product of winemaking industry. Two white varieties of Grüner Veltliner and Sauvignon and two red varieties of Blauer Portugieser and Cabernet Moravia were selected for the study. Antioxidant activity, concentration of total polyphenols and concentration of individual phenolic compounds were determined. The results show a higher concentration of polyphenols and higher values of antioxidant activity in red varieties. The Blauer Portugieser variety contained the highest concentrations of syringic acid 1.346 mg.L-1, caffeic acid 20 mg.L-1, ferulic acid 1.192 mg.L-1, coumaric acid 3.231 mg.L-1, trans-resveratrol 14.195 mg.L-1, catechin 79.314 mg.L-1 and epicatechin 33.205 mg.L-1. Cabernet Moravia contained the highest concentration of protocatechuic acid 1.201 mg.L-1, the Sauvignon variety reached the highest concentration of gallic acid 4.015 mg.L-1 and hydroxybenzoic acid 0.076 mg.L-1. The highest values of alpha-amino acids were determined in the Blauer Portugieser variety 165.3 mg L-1 and the lowest in the Grüner Veltliner variety 33.3 mg L-1. The highest concentration of ammonia nitrogen was 214 mg L-1 for the Blauer Portugieser variety and the lowest concentration of ammonia nitrogen was measured in Cabernet Moravia 35.7 mg L-1.


2013 ◽  
Vol 781-784 ◽  
pp. 1619-1624
Author(s):  
Ying Liu ◽  
Ting Jun Ma ◽  
Jie Chen

Through determinated the changes of composition and activity during the fermentation period of buckwheat beer , then analyzed the relationship by used SAS 9.0 software. Determined the monomer flavonoid, monomer phenolic acids by HPLC, antioxidant activity by against the ABTS and DPPH. The results show that the amount of total flavonoid (from 0.607±0.047 g·L-1to 0.519±0.038 g·L-1), total phenolic acids (from 0.690±0.060 g·L-1to 0.395±0.034 g·L-1) change during fermentation . Tartary buckwheat beer exhibits strong DPPH (103.904±0.361 VCEAC mg·L-1) and ABTS (25.018±0.268 VCEAC mg·L-1) radical scavenging activities.The rutin, quercetin, ferulic acid, caffeic acid, protocatechuic acid,and p-coumaric acid show a downward trend, however,the isoquercitrin, gallic acid display the rising trend. At the same time,the regression equation as Y2( Total phenolic) = 0.31595 + 2.10834X5(Quercetin)(P<0.05), Y3( ABTS[VCEA ) = 47.75299 23.78253X8(Ferulic acid)(P,0.05).


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fouad A. Ahmed ◽  
Rehab F. M. Ali

Brassicaspecies are very rich in health-promoting phytochemicals, including phenolic compounds, vitamin C, and minerals. The objective of this study was to investigate the effect of different blanching (i.e., water and steam) and cooking (i.e., water boiling, steam boiling, microwaving, and stir-frying) methods on the nutrient components, phytochemical contents (i.e., polyphenols, carotenoids, flavonoid, and ascorbic acid), antioxidant activity measured by DPPH assay, and phenolic profiles of white cauliflower. Results showed that water boiling and water blanching processes had a great effect on the nutrient components and caused significant losses of dry matter, protein, and mineral and phytochemical contents. However, steam treatments (blanching and cooking), stir-frying, and microwaving presented the lowest reductions. Methanolic extract of fresh cauliflower had significantly the highest antioxidant activity (68.91%) followed by the extracts of steam-blanched, steam-boiled, stir-fried, and microwaved cauliflower 61.83%, 59.15%, 58.93%, and 58.24%, respectively. HPLC analysis revealed that the predominant phenolics of raw cauliflower were protocatechuic acid (192.45), quercetin (202.4), pyrogallol (18.9), vanillic acid (11.90), coumaric acid (6.94), and kaempferol (25.91) mg/100 g DW, respectively.


2020 ◽  
Author(s):  
Prince A Fordjour ◽  
Jonathan P Adjimani ◽  
Bright Asare ◽  
Nancy O Duah-Quashie ◽  
Neils B Quashie

Abstract Background In the absence of an effective vaccine against malaria, chemotherapy remains a major option in the control of the disease. Then, the recent report of the emergence and spread of clones of Plasmodium falciparum resistant to available antimalarial drugs should be of concern as it poses a threat to disease control. Compounds whose pharmacological properties have been determined and touted for other disease can be investigated for antimalarial activity. Phenolic acids (polyphenols) have been reported to exhibit antioxidant, anticancer, anti-inflammatory, antiviral and antibiotic effects. However, information on their antimalarial activity is scanty. Phenolic acids are present in a variety of plant-based foods: mostly high in the skins and seeds of fruits as well as the leaves of vegetables. Systematic assessment of these compounds for antimalarial activity is therefore needed. Method Using the classical in vitro drug test, the antimalarial activities of five hydroxycinnamic acids, (caffeic acid, rosmarinic acid, chlorogenic acid, o-Coumaric acid and ferulic acid) and two hydroxybenzoic acids (gallic acid and protocatechuic acid) against 3D7 clones of Plasmodium falciparum was determined. Results Among the phenolic acids tested, caffeic acid and gallic acid were found to be the most effective, with mean IC 50 value of 17.73µg/ml and 26.59µg/ml respectively for three independent determinations. Protocatechuic acid had an IC 50 value of 30.08 µg/ml. Rosmarinic acid and chlorogenic acid, showed moderate antimalarial activities with IC 50 values of 103.59µg/ml and 105µg/ml respectively. The IC 50 values determined for ferulic acid and o-Coumaric acid were 93.36µg/ml and 82.23µg/ml respectively. Conclusion The outcome of this study suggest that natural occurring phenolic compounds have appreciable level of antimalarial activity which can be exploited for use through combination of actions/efforts including structural manipulation to attain an increase in their antimalarial effect. Eating of natural food products rich in these compounds could provide antimalarial prophylactic effect.


1957 ◽  
Vol 3 (6) ◽  
pp. 847-862 ◽  
Author(s):  
C. F. van Sumere ◽  
C. van Sumere-de Preter ◽  
L. C. Vining ◽  
G. A. Ledingham

A paper chromatographic method suitable for identification of the small amounts of coumarins and phenolic acids present in the uredospores of wheat stem rust was developed. By the use of the circular technique and a combination of three different solvent systems an adequate separation of all the substances was achieved. A preliminary development of the chromatogram with a solvent in which the test compounds were non-mobile facilitated identification and avoided the need for extensive preliminary fractionation of the extracts.Using this method the following compounds were identified in spore extracts: coumarin, umbelliferone, daphnetin, aesculetin, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, o-coumaric acid, p-coumaric acid, ferulic acid, and caffeic acid; coumarin, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, o-coumaric acid, and ferulic acid were also present as glycosides; in addition scopoletin, gallic acid, syringic acid, and sinapic acid were detected after hydrolysis and are assumed to be present only in a bound form.In order to obtain some information about the role of these substances in the physiology of wheat stem rust, uredospores were germinated by being floated en masse on dilute aqueous solutions. Of the compounds tested, indoleacetic acid, coumarin, o-coumaric acid, protocatechuic acid, umbelliferone, and daphnetin gave a marked stimulation of germination at concentrations of 10–200 μg./ml. Caffeic acid, vanillic acid, p-hydroxybenzoic acid, ferulic acid, and ferulic acid β-glucoside had little effect or were strongly inhibitory.The stimulation of germination is attributed to the counteraction of a self-inhibitor released from the spores, and the possible significance of the compounds on the physiology of the rust and the host–parasite relationship is discussed.


RSC Advances ◽  
2014 ◽  
Vol 4 (95) ◽  
pp. 52647-52657 ◽  
Author(s):  
Nishi Srivastava ◽  
Amit Srivastava ◽  
S. Srivastava ◽  
A. K. S. Rawat ◽  
A. R. Khan

We developed a HPTLC method for the quantification of vanillic acid, syringic acid, gallic acid and protocatechuic acid and kinetic studies on antioxidant potential in Bergenia ciliata and Bergenia stracheyi.


2005 ◽  
Vol 11 (4) ◽  
pp. 315-321 ◽  
Author(s):  
A. M. Righetto ◽  
F. M. Netto ◽  
F. Carraro

Chemical composition and antioxidant activity of juice from immature and mature acerola and of concentrated juice from immature acerola were determined. Tartaric, malic and citric acids and a high content of ascorbic acid were found in all the juices. Vitamin C contents were 4.80, 1.90 and 0.97 g/100 g for the concentrated immature, the immature, and the mature acerola juices respectively. The total phenol contents decreased during ripening, from 3.8 mg of catechin/g for immature acerola juice to 1.4 mg of catechin/g for mature acerola juice. The concentrated immature juice had a content of 9.2mg of catechin/g of juice. Catechin, gallic acid, coumaric acid, syringic acid, caffeic acid and ferrulic acid were detected in immature acerola juice by HPLC analysis whereas mature acerola juice showed only one predominant peak with a retention time similar to that of ferrulic acid. The concentrated juice from immature acerola reduced the oxidation of methyl linoleate by 57.2% while the juice from immature acerola reduced the oxidation by 28.1%. These results stated that the antioxidant potential of the acerola juice depended on its content of phenolic compounds and the vitamin C.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2157-2160 ◽  
Author(s):  
K. Tatsumi ◽  
S. Wada ◽  
H. Ichikawa ◽  
S.Y. Liu ◽  
Jean-Marc Bollag

The reaction between 3,4-dichloroaniline and vanillic, syringic and protocatechuic acids was investigated in the presence of a laccase isolated from the fungus Rhizoctoniapraticola. The aniline alone was not oxidized by the laccase, but if incubated with the phenolic acids and the laccase, cross-linking took place. Particularly the protocatechuic acid and syringic acid reacted with 3,4-dichloroaniline, and cross-linked dimers were isolated as main products.


Toxins ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 341
Author(s):  
Paola Giorni ◽  
Silvia Rastelli ◽  
Sofia Fregonara ◽  
Terenzio Bertuzzi

Total phenolic content (TPC) and several phenolic acids present in rice grains were compared with fungal infection and mycotoxin presence throughout the growing season. Samples of 4 rice varieties were collected in 2018 and 2019 at 3 different plant phenological stages. Total fungal and main mycotoxigenic fungi incidence were checked and mycotoxin content was analysed. On the same samples, TPC and the concentration of 8 main phenolic acids (chlorogenic acid, caffeic acid, syringic acid, 4-hydroxybenzoic acid (4-HBA), p-coumaric acid, ferulic acid, protocatecuic acid and gallic acid) were measured. The results showed significant differences between years for both fungal incidence and mycotoxin presence. In 2018 there was a lower fungal presence (42%) than in 2019 (57%) while, regarding mycotoxins, sterigmatocystin (STC) was found in almost all the samples and at all growing stages while deoxynivalenol (DON) was found particularly during ripening. An interesting relationship was found between fungal incidence and TPC, and some phenolic acids seemed to be more involved than others in the plant defense system. Ferulic acid and protocatecuic acid showed a different trend during the growing season depending on fungal incidence and resulted to be positively correlated with p-coumaric acid and 4-HBA that seem involved in mycotoxin containment in field.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Umakanta Sarker ◽  
Shinya Oba

Abstract The selected A. tricolor accessions contained abundant color attributes, betacyanin, carotenoids, betalains, betaxanthins, and antioxidants potentiality that varied in terms of genotypes. For the first time, we identified 4 betacyanins, and 5 carotenoid compounds in A. tricolor genotypes. The genotype VA14 and VA16 had abundant color attributes, betacyanin such as amaranthine, iso-amaranthine, betanin, iso-betanin, and antioxidants potentiality. These two genotypes having an excellent source of color attributes, betacyanins, betalains, betaxanthins, and antioxidants potentiality could be used as potent antioxidant varieties. The genotype VA11 and VA16 had abundant carotenoid components, such as zeaxanthin, lutein, violaxanthin, neoxanthin, total xanthophylls, and beta-carotene. The genotype VA11 and VA16 had abundant carotenoid components that could be used as carotenoid enrich varieties. It revealed from the correlation study that pigment profiles of A. tricolor genotypes exhibited high quenching capacity of radicals. These accessions have high antioxidant potentials and great opportunity to make drinks, preservatives, and colorant of food products to feed the community deficient in antioxidants. The identified components of betacyanins and carotenoids in A. tricolor require comprehensive pharmacological study. The baseline data on color attributes, betacyanins profile, carotenoids profile, betaxanthins, betalains and antioxidant potentiality obtained in the present study could contribute to pharmacologists for evaluating these components scientifically in A. tricolor.


Sign in / Sign up

Export Citation Format

Share Document