scholarly journals Structure Based Multitargeted Molecular Docking Analysis of Selected Furanocoumarins against Breast Cancer

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Reetuparna Acharya ◽  
Shinu Chacko ◽  
Pritha Bose ◽  
Antonio Lapenna ◽  
Shakti Prasad Pattanayak

Abstract Breast cancer is one of the biggest global dilemmas and its current therapy is to target the hormone receptors by the use of partial agonists/antagonists. Potent drugs for breast cancer treatment are Tamoxifen, Trastuzumab, Paclitaxel, etc. which show adverse effects and resistance in patients. The aim of the study has been on certain phytochemicals which has potent actions on ERα, PR, EGFR and mTOR inhibition. The current study is performed by the use of molecular docking as protein-ligand interactions play a vital role in drug design. The 3D structures of ERα, PR, EGFR and mTOR were obtained from the protein data bank and docked with 23 3D PubChem structures of furanocoumarin compounds using FlexX. Drug-likeness property was checked by applying the Lipinski’s rule of five on the furanocoumarins to evaluate anti-breast cancer activity. Antagonist and inhibition assay of ERα, EGFR and mTOR respectively has been performed using appropriate in-vitro techniques. The results confirm that Xanthotoxol has the best docking score for breast cancer followed by Bergapten, Angelicin, Psoralen and Isoimperatorin. Further, the in-vitro results also validate the molecular docking analysis. This study suggests that the selected furanocoumarins can be further investigated and evaluated for breast cancer treatment and management strategies.

2018 ◽  
Vol 47 (6) ◽  
pp. 2199-2215 ◽  
Author(s):  
Jian Hao ◽  
Ziqi Jin ◽  
Hongxu Zhu ◽  
Xiaohui Liu ◽  
Yu Mao ◽  
...  

Background/Aims: The Xi-Huang (XH) formula has been used for breast cancer treatment in traditional Chinese medicine (TCM) since 1740. In this study, we show that, XH extract could suppress the growth of breast cancer cells in vitro and in vivo, and that it preferentially inhibits cell growth of estrogen receptor positive (ER+) breast cancer cells. Presently, little is known about the potential mechanism of XH and our studies aim to elucidate its mechanism in breast cancer treatment. Methods: Network-based systems biology and molecular docking analyses were performed to predict explicit targets of XH and active ingredients in XH. The effects of XH on cell viability, cell cycle, apoptosis in different breast cancer cell lines were analyzed in vitro. A model of transplanted tumors on nude mice was used to study the anticancer effect in vivo. Various techniques, including western blotting, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, co-immunoprecipitation and immunohistochemical were utilized to assess the expression of targets of XH in vitro and in vivo. RNA sequencing (RNA-seq) was performed to study the gene targets of XH. Furthermore, we analyzed of protein-ligand binding reactions by isothermal titration calorimetry (ITC). Results: Using network-based systems biology and molecular docking analyses, we predicted that the major targets of XH were ERα and HSP90. Moreover, we found that, XH mediated its anti-cancer effects by promoting the disassociation of ERα and HSP90, resulting in the degradation of ERα and blockade of transport of ERα to the nucleus. XH also caused the dissociation of ERα and other oncoproteins via binding to HSP90. Some of the active ingredients in XH share a common cyclopentane hydrogen skeleton and were predicted to target ERα based on the structural similarity. Conclusions: XH, which has been used since 1740, has antiestrogenic effects in breast cancer via the targeting of ERα.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Farnaz Dabbagh Moghaddam ◽  
Iman Akbarzadeh ◽  
Ehsan Marzbankia ◽  
Mahsa Farid ◽  
Leila khaledi ◽  
...  

Abstract Background Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done. Results This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups. Conclusions Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.


2020 ◽  
Vol 16 (11) ◽  
pp. 949-957
Author(s):  
R Asaithambi ◽  

It is known that α-glucosidase is linked with the antioxidant activity. Therefore, it is of interest to document the in- vitro and molecular docking analysis of chalconeimine derivatives with α-glucosidase (PDB ID: 2ZEO) for further consideration.


2021 ◽  
Author(s):  
Damian Ignacio Delbart ◽  
German Francisco Giri ◽  
Agostina Cammarata ◽  
Lizeth Ariza Bareño ◽  
Natalia Loreley Amigo ◽  
...  

Abstract Purpose: Breast cancer is the leading cause of cancer death among women worldwide. For this reason, the development of new therapies is still essential. In this work we have analyzed the antitumor potential of levoglucosenone, a chiral building block derived from glucose, and three structurally related analogues obtained from soybean hulls pyrolysis.Methods: Employing human and murine mammary cancer models, we have evaluated the effect of our compounds on cell viability through MTS assay, apoptosis induction by acridine orange / ethidium bromide staining and/or flow cytometry and the loss of mitochondrial potential by tetramethylrhodamine methyl ester staining. Autophagy and senescence induction were also evaluated by Western blot and β-galactosidase activity respectively. Secreted metalloproteases activity was determined by quantitative zymography. Migratory capacity was assessed by wound healing assays while invasive potential was analyzed using Matrigel-coated transwell chambers. In vivo studies were also performed to evaluate subcutaneous tumor growth and experimental lung colonization.Results: Apoptosis was identified as the main mechanism responsible for the reduction of monolayer cell content induced by the compounds without detecting modulations of autophagy or senescence processes. Two of the four compounds were able to modulate in vitro events associated with tumor progression, such as migratory potential, invasiveness, and proteases secretion. Furthermore, tumor volume and metastatic spread were significantly reduced in vivo after treatment with the compounds.Conclusion: We could obtain from soybean hulls, a material with almost no commercial value, a variety of chemical compounds useful for breast cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document