Synthesis,in Vitro, and in VivoBiological Evaluation and Molecular Docking Analysis of Novel 3-(3-oxo-substitutedphenyl-3-)4-(2-(piperidinyl)ethoxy)phenyl)propyl)-2H-chromen-2-one Derivatives as Anti-breast Cancer Agents

2015 ◽  
Vol 87 (4) ◽  
pp. 608-617 ◽  
Author(s):  
Pritam N. Dube ◽  
Madhuri N. Waghmare ◽  
Santosh N. Mokale
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Reetuparna Acharya ◽  
Shinu Chacko ◽  
Pritha Bose ◽  
Antonio Lapenna ◽  
Shakti Prasad Pattanayak

Abstract Breast cancer is one of the biggest global dilemmas and its current therapy is to target the hormone receptors by the use of partial agonists/antagonists. Potent drugs for breast cancer treatment are Tamoxifen, Trastuzumab, Paclitaxel, etc. which show adverse effects and resistance in patients. The aim of the study has been on certain phytochemicals which has potent actions on ERα, PR, EGFR and mTOR inhibition. The current study is performed by the use of molecular docking as protein-ligand interactions play a vital role in drug design. The 3D structures of ERα, PR, EGFR and mTOR were obtained from the protein data bank and docked with 23 3D PubChem structures of furanocoumarin compounds using FlexX. Drug-likeness property was checked by applying the Lipinski’s rule of five on the furanocoumarins to evaluate anti-breast cancer activity. Antagonist and inhibition assay of ERα, EGFR and mTOR respectively has been performed using appropriate in-vitro techniques. The results confirm that Xanthotoxol has the best docking score for breast cancer followed by Bergapten, Angelicin, Psoralen and Isoimperatorin. Further, the in-vitro results also validate the molecular docking analysis. This study suggests that the selected furanocoumarins can be further investigated and evaluated for breast cancer treatment and management strategies.


2020 ◽  
Vol 16 (11) ◽  
pp. 949-957
Author(s):  
R Asaithambi ◽  

It is known that α-glucosidase is linked with the antioxidant activity. Therefore, it is of interest to document the in- vitro and molecular docking analysis of chalconeimine derivatives with α-glucosidase (PDB ID: 2ZEO) for further consideration.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126669 ◽  
Author(s):  
Jing Zhou ◽  
Guodi Lu ◽  
Honglan Wang ◽  
Junfeng Zhang ◽  
Jinao Duan ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 189 ◽  
Author(s):  
Yang Yang ◽  
Chong-Yin Shi ◽  
Jing Xie ◽  
Jia-He Dai ◽  
Shui-Lian He ◽  
...  

Moringa oleifera Lam. (MO) is called the “Miracle Tree” because of its extensive pharmacological activity. In addition to being an important food, it has also been used for a long time in traditional medicine in Asia for the treatment of chronic diseases such as diabetes and obesity. In this study, by constructing a library of MO phytochemical structures and using Discovery Studio software, compounds were subjected to virtual screening and molecular docking experiments related to their inhibition of dipeptidyl peptidase (DPP-IV), an important target for the treatment of type 2 diabetes. After the four-step screening process, involving screening for drug-like compounds, predicting the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of pharmacokinetic properties, LibDock heatmap matching analysis, and CDOCKER molecular docking analysis, three MO components that were candidate DPP-IV inhibitors were identified and their docking modes were analyzed. In vitro activity verification showed that all three MO components had certain DPP-IV inhibitory activities, of which O-Ethyl-4-[(α-l-rhamnosyloxy)-benzyl] carbamate (compound 1) had the highest activity (half-maximal inhibitory concentration [IC50] = 798 nM). This study provides a reference for exploring the molecular mechanisms underlying the anti-diabetic activity of MO. The obtained DPP-IV inhibitors could be used for structural optimization and in-depth in vivo evaluation.


2020 ◽  
Vol 104 ◽  
pp. 104277
Author(s):  
Maryam Aisyah Abdullah ◽  
Yu-Ri Lee ◽  
Siti Nurulhuda Mastuki ◽  
Sze Wei Leong ◽  
Wan Norhamidah Wan Ibrahim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document