scholarly journals microRNA-875-5p plays critical role for mesenchymal condensation in epithelial-mesenchymal interaction during tooth development

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Keita Funada ◽  
Keigo Yoshizaki ◽  
Kanako MIyazaki ◽  
Xue Han ◽  
Tomomi Yuta ◽  
...  
2008 ◽  
Vol 87 (3) ◽  
pp. 238-243 ◽  
Author(s):  
K. Takamori ◽  
R. Hosokawa ◽  
X. Xu ◽  
X. Deng ◽  
P. Bringas ◽  
...  

The interaction between epithelial and mesenchymal tissues plays a critical role in the development of organs such as teeth, lungs, and hair. During tooth development, fibroblast growth factor (FGF) signaling is critical for regulating reciprocal epithelial and mesenchymal interactions. FGF signaling requires FGF ligands and their receptors (FGFRs). In this study, we investigated the role of epithelial FGF signaling in tooth development, using the Cre-loxp system to create tissue-specific inactivation of Fgfr1 in mice. In K14-Cre;Fgfr1 fl/fl mice, the apical sides of enamel-secreting ameloblasts failed to adhere properly to each other, although ameloblast differentiation was unaffected at early stages. Prior to eruption, enamel structure was compromised in the K14-Cre;Fgfr1 fl/fl mice and displayed severe enamel defects that mimic amelogenesis imperfecta (AI), with a rough, irregular enamel surface. These results suggest that there is a cell-autonomous requirement for FGF signaling in the dental epithelium during enamel formation. Loss of Fgfr1 affects ameloblast organization at the enamel-secretory stage and, hence, the formation of enamel.


2017 ◽  
Vol 96 (11) ◽  
pp. 1221-1228 ◽  
Author(s):  
J. Wang ◽  
J.Q. Feng

Tooth is made of an enamel-covered crown and a cementum-covered root. Studies on crown dentin formation have been a major focus in tooth development for several decades. Interestingly, the population prevalence for genetic short root anomaly (SRA) with no apparent defects in crown is close to 1.3%. Furthermore, people with SRA itself are predisposed to root resorption during orthodontic treatment. The discovery of the unique role of Nfic (nuclear factor I C; a transcriptional factor) in controlling root but not crown dentin formation points to a new concept: tooth crown and root have different control mechanisms. Further genetic mechanism studies have identified more key molecules (including Osterix, β-catenin, and sonic hedgehog) that play a critical role in root formation. Extensive studies have also revealed the critical role of Hertwig’s epithelial root sheath in tooth root formation. In addition, Wnt10a has recently been found to be linked to multirooted tooth furcation formation. These exciting findings not only fill the critical gaps in our understanding about tooth root formation but will aid future research regarding the identifying factors controlling tooth root size and the generation of a whole “bio-tooth” for therapeutic purposes. This review starts with human SRA and mainly focuses on recent progress on the roles of NFIC-dependent and NFIC-independent signaling pathways in tooth root formation. Finally, this review includes a list of the various Cre transgenic mouse lines used to achieve tooth root formation–related gene deletion or overexpression, as well as strengths and limitations of each line.


2021 ◽  
pp. 002203452110466
Author(s):  
Z. Chinipardaz ◽  
M. Liu ◽  
D.T. Graves ◽  
S. Yang

The primary cilium is a nonmotile microtubule-based organelle in most vertebrate cell types. The primary cilium plays a critical role in tissue development and homeostasis by sensing and transducing various signaling pathways. Ciliary proteins such as intraflagellar transport (IFT) proteins as well as ciliary motor proteins, kinesin and dynein, comprise a bidirectional intraflagellar transport system needed for cilia formation and function. Mutations in ciliary proteins that lead to loss or dysfunction of primary cilia cause ciliopathies such as Jeune syndrome and Ellis–van Creveld syndrome and cause abnormalities in tooth development. These diseases exhibit severe skeletal and craniofacial dysplasia, highlighting the significance of primary cilia in skeletal development. Cilia are necessary for the propagation of hedgehog, transforming growth factor β, platelet-derived growth factor, and fibroblast growth factor signaling during osteogenesis and chondrogenesis. Ablation of ciliary proteins such as IFT80 or IFT20 blocks cilia formation, which inhibits osteoblast differentiation, osteoblast polarity, and alignment and reduces bone formation. Similarly, cilia facilitate chondrocyte differentiation and production of a cartilage matrix. Cilia also play a key role in mechanosensing and are needed for increased bone formation in response to mechanical forces.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nora Alhazmi ◽  
Shannon H. Carroll ◽  
Kenta Kawasaki ◽  
Katherine C. Woronowicz ◽  
Shawn A. Hallett ◽  
...  

AbstractWnt signaling plays a critical role in craniofacial patterning, as well as tooth and bone development. Rspo2 and Rspo3 are key regulators of Wnt signaling. However, their coordinated function and relative requirement in craniofacial development and odontogensis are poorly understood. We showed that in zebrafish rspo2 and rspo3 are both expressed in osteoprogenitors in the embryonic craniofacial skeleton. This is in contrast to mouse development, where Rspo3 is expressed in osteoprogenitors while Rspo2 expression is not observed. In zebrafish, rspo2 and rspo3 are broadly expressed in the pulp, odontoblasts and epithelial crypts. However, in the developing molars of the mouse, Rspo3 is largely expressed in the dental follicle and alveolar mesenchyme while Rspo2 expression is restricted to the tooth germ. While Rspo3 ablation in the mouse is embryonic lethal, zebrafish rspo3-/- mutants are viable with modest decrease in Meckel’s cartilage rostral length. However, compound disruption of rspo3 and rspo2 revealed synergistic roles of these genes in cartilage morphogenesis, fin development, and pharyngeal tooth development. Adult rspo3−/− zebrafish mutants exhibit a dysmorphic cranial skeleton and decreased average tooth number. This study highlights the differential functions of Rspo2 and Rspo3 in dentocranial morphogenesis in zebrafish and in mouse.


Oral Diseases ◽  
2021 ◽  
Author(s):  
Chunmei Xu ◽  
Xudong Xie ◽  
Lei Zhao ◽  
Yafei Wu ◽  
Jun Wang

2010 ◽  
Vol 89 (8) ◽  
pp. 779-784 ◽  
Author(s):  
H. Cao ◽  
J. Wang ◽  
X. Li ◽  
S. Florez ◽  
Z. Huang ◽  
...  

2017 ◽  
Vol 96 (9) ◽  
pp. 965-974 ◽  
Author(s):  
M. Hampl ◽  
P. Cela ◽  
H.L. Szabo-Rogers ◽  
M. Kunova Bosakova ◽  
H. Dosedelova ◽  
...  

Primary cilium is a solitary organelle that emanates from the surface of most postmitotic mammalian cells and serves as a sensory organelle, transmitting the mechanical and chemical cues to the cell. Primary cilia are key coordinators of various signaling pathways during development and maintenance of tissue homeostasis. The emerging evidence implicates primary cilia function in tooth development. Primary cilia are located in the dental epithelium and mesenchyme at early stages of tooth development and later during cell differentiation and production of hard tissues. The cilia are present when interactions between both the epithelium and mesenchyme are required for normal morphogenesis. As the primary cilium coordinates several signaling pathways essential for odontogenesis, ciliary defects can interrupt the latter process. Genetic or experimental alterations of cilia function lead to various developmental defects, including supernumerary or missing teeth, enamel and dentin hypoplasia, or teeth crowding. Moreover, dental phenotypes are observed in ciliopathies, including Bardet-Biedl syndrome, Ellis-van Creveld syndrome, Weyers acrofacial dysostosis, cranioectodermal dysplasia, and oral-facial-digital syndrome, altogether demonstrating that primary cilia play a critical role in regulation of both the early odontogenesis and later differentiation of hard tissue–producing cells. Here, we summarize the current evidence for the localization of primary cilia in dental tissues and the impact of disrupted cilia signaling on tooth development in ciliopathies.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 997
Author(s):  
Ruiye Bi ◽  
Ping Lyu ◽  
Yiming Song ◽  
Peiran Li ◽  
Dongzhe Song ◽  
...  

Dental follicle progenitor/stem cells (DFPCs) are a group of dental mesenchyme stem cells that lie in the dental follicle and play a critical role in tooth development and maintaining function. Originating from neural crest, DFPCs harbor a multipotential differentiation capacity. More importantly, they have superiorities, including the easy accessibility and abundant sources, active self-renewal ability and noncontroversial sources compared with other stem cells, making them an attractive candidate in the field of tissue engineering. Recent advances highlight the excellent properties of DFPCs in regeneration of orofacial tissues, including alveolar bone repair, periodontium regeneration and bio-root complex formation. Furthermore, they play a unique role in maintaining a favorable microenvironment for stem cells, immunomodulation and nervous related tissue regeneration. This review is intended to summarize the current knowledge of DFPCs, including their stem cell properties, physiological functions and clinical application potential. A deep understanding of DFPCs can thus inspire novel perspectives in regenerative medicine in the future.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1098
Author(s):  
Jun Kang ◽  
Haoling Chen ◽  
Fuping Zhang ◽  
Tong Yan ◽  
Wenguo Fan ◽  
...  

Dental papilla cells (DPCs), precursors of odontoblasts, are considered promising seed cells for tissue engineering. Emerging evidence suggests that melatonin promotes odontoblastic differentiation of DPCs and affects tooth development, although the precise mechanisms remain unknown. Retinoid acid receptor-related orphan receptor α (RORα) is a nuclear receptor for melatonin that plays a critical role in cell differentiation and embryonic development. This study aimed to explore the role of RORα in odontoblastic differentiation and determine whether melatonin exerts its pro-odontogenic effect via RORα. Herein, we observed that RORα was expressed in DPCs and was significantly increased during odontoblastic differentiation in vitro and in vivo. The overexpression of RORα upregulated the expression of odontogenic markers, alkaline phosphatase (ALP) activity and mineralized nodules formation (p < 0.05). In contrast, odontoblastic differentiation of DPCs was suppressed by RORα knockdown. Moreover, we found that melatonin elevated the expression of odontogenic markers, which was accompanied by the upregulation of RORα (p < 0.001). Utilising small interfering RNA, we further demonstrated that RORα inhibition attenuated melatonin-induced odontogenic gene expression, ALP activity and matrix mineralisation (p < 0.01). Collectively, these results provide the first evidence that RORα can promote odontoblastic differentiation of DPCs and mediate the pro-odontogenic effect of melatonin.


Author(s):  
M.R. Richter ◽  
R.V. Blystone

Dexamethasone and other synthetic analogs of corticosteroids have been employed clinically as enhancers of lung development. The mechanism(s) by which this steroid induction of later lung maturation operates is not clear. This study reports the effect on lung epithelia of dexamethasone administered at different intervals during development. White Leghorn chick embryos were used so as to remove possible maternal and placental influences on the exogenously applied steroid. Avian lung architecture does vary from mammals; however, respiratory surfactant produced by the lung epithelia serves an equally critical role in avian lung physiology.


Sign in / Sign up

Export Citation Format

Share Document