scholarly journals Effects of optogenetic stimulation of basal forebrain parvalbumin neurons on Alzheimer’s disease pathology

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline A. Wilson ◽  
Sarah Fouda ◽  
Shuzo Sakata

Abstract Neuronal activity can modify Alzheimer’s disease pathology. Overexcitation of neurons can facilitate disease progression whereas the induction of cortical gamma oscillations can reduce amyloid load and improve cognitive functions in mouse models. Although previous studies have induced cortical gamma oscillations by either optogenetic activation of cortical parvalbumin-positive (PV+) neurons or sensory stimuli, it is still unclear whether other approaches to induce gamma oscillations can also be beneficial. Here we show that optogenetic activation of PV+ neurons in the basal forebrain (BF) increases amyloid burden, rather than reducing it. We applied 40 Hz optical stimulation in the BF by expressing channelrhodopsin-2 (ChR2) in PV+ neurons of 5xFAD mice. After 1-h induction of cortical gamma oscillations over three days, we observed the increase in the concentration of amyloid-β42 in the frontal cortical region, but not amyloid-β40. Amyloid plaques were accumulated more in the medial prefrontal cortex and the septal nuclei, both of which are targets of BF PV+ neurons. These results suggest that beneficial effects of cortical gamma oscillations on Alzheimer’s disease pathology can depend on the induction mechanisms of cortical gamma oscillations.

2020 ◽  
Author(s):  
Caroline A Wilson ◽  
Sarah Fouda ◽  
Shuzo Sakata

AbstractNeuronal activity can modify Alzheimer’s disease pathology. Although overexcitation of neurons can facilitate disease progression, the induction of cortical gamma oscillations can reduce amyloid load and improve cognitive functions in mouse models. These beneficial effects of gamma oscillations can be caused by either optogenetic activation of cortical parvalbumin-positive (PV+) neurons or 40 Hz repetitive sensory stimuli. However, given the fact that cortical gamma oscillations can be induced by multiple mechanisms, it is still unclear whether other approaches to induce gamma oscillations can also be beneficial. Here we show that optogenetic activation of PV+ neurons in the basal forebrain (BF) increases amyloid burden, rather than reducing it. We applied 40 Hz optical stimulation in the BF of 5xFAD mice by expressing channelrhodopsin-2 (ChR2) in PV+ neurons. After one-hour induction of cortical gamma oscillations over three days, we observed the increase in the concentration of amyloid-β42 in the frontal cortical region, but not amyloid-β40. The density of amyloid plaques also increased in the medial prefrontal cortex and the septal nuclei, both of which are targets of BF PV+ neurons. These results suggest that effects of cortical gamma oscillations on Alzheimer’s disease pathology can be bidirectional depending on their induction mechanisms.Significance StatementAlzheimer’s disease (AD) is the most common cause of dementia. Although numerous molecular targets have been identified, the development of treatment is still a challenge. Accumulating evidence shows that artificial control of neuronal activity can modify AD pathology. In particular, the induction of cortical gamma (~40 Hz) oscillations can ameliorate AD pathology and improve cognitive functions. Here we show that optogenetic activation of parvalbumin-positive (PV+) neurons in the basal forebrain (BF) has opposite effects. By expressing channelrhodopsin-2 (ChR2) in PV+ neurons of an AD mouse model and optically stimulating BF PV+ neurons, we induced gamma oscillations and found increased amyloid burden. These results imply that AD pathology can be modified bidirectionally depending on induction mechanisms of gamma oscillations.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Irina Belaya ◽  
Mariia Ivanova ◽  
Annika Sorvari ◽  
Marina Ilicic ◽  
Sanna Loppi ◽  
...  

Abstract Background Increased physical exercise improves cognitive function and reduces pathology associated with Alzheimer’s disease (AD). However, the mechanisms underlying the beneficial effects of exercise in AD on the level of specific brain cell types remain poorly investigated. The involvement of astrocytes in AD pathology is widely described, but their exact role in exercise-mediated neuroprotection warrant further investigation. Here, we investigated the effect of long-term voluntary physical exercise on the modulation of the astrocyte state. Methods Male 5xFAD mice and their wild-type littermates had free access to a running wheel from 1.5 to 7 months of age. A battery of behavioral tests was used to assess the effects of voluntary exercise on cognition and learning. Neuronal loss, impairment in neurogenesis, beta-amyloid (Aβ) deposition, and inflammation were evaluated using a variety of histological and biochemical measurements. Sophisticated morphological analyses were performed to delineate the specific involvement of astrocytes in exercise-induced neuroprotection in the 5xFAD mice. Results Long-term voluntary physical exercise reversed cognitive impairment in 7-month-old 5xFAD mice without affecting neurogenesis, neuronal loss, Aβ plaque deposition, or microglia activation. Exercise increased glial fibrillary acid protein (GFAP) immunoreactivity and the number of GFAP-positive astrocytes in 5xFAD hippocampi. GFAP-positive astrocytes in hippocampi of the exercised 5xFAD mice displayed increases in the numbers of primary branches and in the soma area. In general, astrocytes distant from Aβ plaques were smaller in size and possessed simplified processes in comparison to plaque-associated GFAP-positive astrocytes. Morphological alterations of GFAP-positive astrocytes occurred concomitantly with increased astrocytic brain-derived neurotrophic factor (BDNF) and restoration of postsynaptic protein PSD-95. Conclusions Voluntary physical exercise modulates the reactive astrocyte state, which could be linked via astrocytic BDNF and PSD-95 to improved cognition in 5xFAD hippocampi. The molecular pathways involved in this modulation could potentially be targeted for benefit against AD.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253320
Author(s):  
Koji Fukui ◽  
Shunsuke Kimura ◽  
Yugo Kato ◽  
Masahiro Kohno

Far infrared light has been used in many medical procedures. However, the detailed biological mechanisms of infrared light’s effects have not yet been elucidated. Many researchers have pointed out the thermal effects of treatments such as infrared saunas, which are known to increase blood flow. Alzheimer’s disease (AD) is associated with gradual decreases in brain blood flow and resulting dementia. In this study, we attempted to clarify the beneficial effects of far infrared light using the 5xFAD mouse, a transgenic model of AD. We exposed 5xFAD mice to far infrared light for 5 months. Among the far infrared-exposed AD mice, body weights were significantly decreased, and the levels of nerve growth factor and brain-derived neurotrophic factor protein were significantly increased in selected brain areas (compared to those in non-irradiated AD mice). However, cognition and motor function (as assessed by Morris water maze and Rota Rod tests, respectively) did not differ significantly between the irradiated and non-irradiated AD mouse groups. These results indicated that exposure to far infrared light may have beneficial biological effects in AD mice. However, the experimental schedule and methods may need to be modified to obtain clearer results.


2019 ◽  
Vol 20 (6) ◽  
pp. 1489 ◽  
Author(s):  
Quoc-Viet Duong ◽  
Margia Kintzing ◽  
William Kintzing ◽  
Ihab Abdallah ◽  
Andrew Brannen ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting 5.4 million people in the United States. Currently approved pharmacologic interventions for AD are limited to symptomatic improvement, not affecting the underlying pathology. Therefore, the search for novel therapeutic strategies is ongoing. A hallmark of AD is the compromised blood-brain barrier (BBB); thus, developing drugs that target the BBB to enhance its integrity and function could be a novel approach to prevent and/or treat AD. Previous evidence has shown the beneficial effects of growth factors in the treatment of AD pathology. Based on reported positive results obtained with the product Endoret®, the objective of this study was to investigate the effect of plasma rich in growth factors (PRGF) on the BBB integrity and function, initially in a cell-based BBB model and in 5x Familial Alzheimer’s Disease (5xFAD) mice. Our results showed that while PRGF demonstrated a positive effect in the cell-based BBB model with the enhanced integrity and function of the model, the in-vivo findings showed that PRGF exacerbated amyloid pathology in 5xFAD brains. At 10 and 100% doses, PRGF increased amyloid deposition associated with increased apoptosis and neuroinflammation. In conclusion, our results suggest PRGF may not provide beneficial effects against AD and the consideration to utilize growth factors should further be investigated.


2021 ◽  
Author(s):  
Luis Enrique Arroyo-García ◽  
Sara Bachiller ◽  
Antonio Boza-Serrano ◽  
Antonio Rodríguez-Moreno ◽  
Tomas Deierborg ◽  
...  

Abstract Background: Alzheimer’s disease (AD) is a progressive multifaceted neurodegenerative disorder for which no disease-modifying treatment exists. Neuroinflammation is central to the pathology progression, with evidence suggesting that microglia-released galectin 3 (gal3) plays a pivotal role by amplifying neuroinflammation in AD. However, possible involvement of gal3 in the disruption of cognition-relevant neuronal network oscillations typical of AD remains unknown. Methods: Here, we investigate the functional implications of gal3 signaling on cognition-relevant gamma oscillations (30-80 Hz) by performing electrophysiological recordings in hippocampal area CA3 of wild-type (WT) and 5xFAD mice in vitro. Results: Gal3 application decreases gamma oscillation power and rhythmicity in an activity-dependent manner and is accompanied by impairment of cellular dynamics in fast-spiking interneurons (FSN) and pyramidal cells (PCs). We found that gal3-induced disruption is mediated by the gal3-carbohydrate-recognition domain and prevented by the gal3 inhibitor TD139, which also prevents Aβ42-induced degradation of gamma oscillations. Furthermore, we demonstrate that 5xFAD mice lacking gal3 (5xFAD-Gal3KO) exhibit WT-like gamma network dynamics.Conclusions: We report for the first time that gal3 impairs cognition-relevant neuronal network dynamics by spike-phase uncoupling of FSN inducing a network performance collapse. Moreover, our findings suggest gal3 inhibition as a potential therapeutic target to counteract the neuronal network instability typical of AD and other neurological disorders encompassing neuroinflammation and cognitive decline.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eugene Kim ◽  
Davide Di Censo ◽  
Mattia Baraldo ◽  
Camilla Simmons ◽  
Ilaria Rosa ◽  
...  

AbstractAmyloid plaques are a hallmark of Alzheimer’s disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats. Animals were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4 T Bruker scanner. MnCl2 improved signal-to-noise ratio but was not necessary to detect plaques in high-resolution images. Plaques were visible in all transgenic animals and no wild-types, and quantitative susceptibility mapping showed that they were more paramagnetic than the surrounding tissue. This, combined with beta-amyloid and iron staining, indicate that plaque MR visibility in both animal models was driven by plaque size and iron load. Longitudinal relaxation rate mapping revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. This was limited to the rhinencephalon in the TgF344-AD rats, while it was most significantly increased in the cortex of the 5xFAD mice. Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats. Multi-parametric MEMRI is a simple, viable method for detecting amyloid plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present the first in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD.


Author(s):  
Luis Enrique Arroyo-García ◽  
Arturo G. Isla ◽  
Yuniesky Andrade-Talavera ◽  
Hugo Balleza-Tapia ◽  
Raúl Loera-Valencia ◽  
...  

AbstractIn Alzheimer’s disease (AD) the accumulation of amyloid-β (Aβ) correlates with degradation of cognition-relevant gamma oscillations. The gamma rhythm relies on proper neuronal spike-gamma coupling, specifically of fast-spiking interneurons (FSN). Here we tested the hypothesis that decrease in gamma power and FSN synchrony precede amyloid plaque deposition and cognitive impairment in AppNL-G-F knock-in mice (AppNL-G-F). The aim of the study was to evaluate the amyloidogenic pathology progression in the novel AppNL-G-F mouse model using in vitro electrophysiological network analysis. Using patch clamp of FSNs and pyramidal cells (PCs) with simultaneous gamma oscillation recordings, we compared the activity of the hippocampal network of wild-type mice (WT) and the AppNL-G-F mice at four disease stages (1, 2, 4, and 6 months of age). We found a severe degradation of gamma oscillation power that is independent of, and precedes Aβ plaque formation, and the cognitive impairment reported previously in this animal model. The degradation correlates with increased Aβ1-42 concentration in the brain. Analysis on the cellular level showed an impaired spike-gamma coupling of FSN from 2 months of age that correlates with the degradation of gamma oscillations. From 6 months of age PC firing becomes desynchronized also, correlating with reports in the literature of robust Aβ plaque pathology and cognitive impairment in the AppNL-G-F mice. This study provides evidence that impaired FSN spike-gamma coupling is one of the earliest functional impairment caused by the amyloidogenic pathology progression likely is the main cause for the degradation of gamma oscillations and consequent cognitive impairment. Our data suggests that therapeutic approaches should be aimed at restoring normal FSN spike-gamma coupling and not just removal of Aβ.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Nicola Davis ◽  
Bibiana C. Mota ◽  
Larissa Stead ◽  
Emily O. C. Palmer ◽  
Laura Lombardero ◽  
...  

Abstract Background Astrocytes provide a vital support to neurons in normal and pathological conditions. In Alzheimer’s disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology, and synaptic density in AD remain unclear. Methods To explore the role of astrocytes on Aβ pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from Thy-1-GFP transgenic mice incubated with synthetic Aβ42 or double transgenics Thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24 h. Results Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aβ levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aβ due to lower neprilysin and insulin-degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aβ in culture media compared to sections treated with Aβ alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aβ clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analyzed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aβ compared to vehicle control. Conclusions Astrocytes play a protective role in AD by aiding Aβ clearance and supporting synaptic plasticity.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 949
Author(s):  
Athina-Maria Aloizou ◽  
Georgia Pateraki ◽  
Konstantinos Anargyros ◽  
Vasileios Siokas ◽  
Christos Bakirtzis ◽  
...  

Dementia is a debilitating impairment of cognitive functions that affects millions of people worldwide. There are several diseases belonging to the dementia spectrum, most prominently Alzheimer’s disease (AD), vascular dementia (VD), Lewy body dementia (LBD) and frontotemporal dementia (FTD). Repetitive transcranial magnetic stimulation (rTMS) is a safe, non-invasive form of brain stimulation that utilizes a magnetic coil to generate an electrical field and induce numerous changes in the brain. It is considered efficacious for the treatment of various neuropsychiatric disorders. In this paper, we review the available studies involving rTMS in the treatment of these dementia types. The majority of studies have involved AD and shown beneficial effects, either as a standalone, or as an add-on to standard-of-care pharmacological treatment and cognitive training. The dorsolateral prefrontal cortex seems to hold a central position in the applied protocols, but several parameters still need to be defined. In addition, rTMS has shown potential in mild cognitive impairment as well. Regarding the remaining dementias, research is still at preliminary phases, and large, randomized studies are currently lacking.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Moonseok Choi ◽  
Sang-Min Lee ◽  
Dongsoo Kim ◽  
Heh-In Im ◽  
Hye-Sun Kim ◽  
...  

AbstractThe morphological dynamics of astrocytes are altered in the hippocampus during memory induction. Astrocyte–neuron interactions on synapses are called tripartite synapses. These control the synaptic function in the central nervous system. Astrocytes are activated in a reactive state by STAT3 phosphorylation in 5XFAD mice, an Alzheimer’s disease (AD) animal model. However, changes in astrocyte–neuron interactions in reactive or resting-state astrocytes during memory induction remain to be defined. Here, we investigated the time-dependent changes in astrocyte morphology and the number of astrocyte–neuron interactions in the hippocampus over the course of long-term memory formation in 5XFAD mice. Hippocampal-dependent long-term memory was induced using a contextual fear conditioning test in 5XFAD mice. The number of astrocytic processes increased in both wild-type and 5XFAD mice during memory formation. To assess astrocyte–neuron interactions in the hippocampal dentate gyrus, we counted the colocalization of glial fibrillary acidic protein and postsynaptic density protein 95 via immunofluorescence. Both groups revealed an increase in astrocyte–neuron interactions after memory induction. At 24 h after memory formation, the number of tripartite synapses returned to baseline levels in both groups. However, the total number of astrocyte–neuron interactions was significantly decreased in 5XFAD mice. Administration of Stattic, a STAT3 phosphorylation inhibitor, rescued the number of astrocyte–neuron interactions in 5XFAD mice. In conclusion, we suggest that a decreased number of astrocyte–neuron interactions may underlie memory impairment in the early stages of AD.


Sign in / Sign up

Export Citation Format

Share Document