scholarly journals A new isolation device for shortening gene flow distance in small-scale transgenic maize breeding

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lili Zhang ◽  
Shanshan Huo ◽  
Yang Cao ◽  
Xiang Xie ◽  
Yanhua Tan ◽  
...  

Abstract The transmission of pollen is the main cause of maize gene flow. Under the compulsory labeling system for genetically modified (GM) products in China, isolation measures are crucial. At present, there is no effective isolation device for preventing and controlling the short-range flow of GM maize pollen. The purposes of the present experiments were to overcome the deficiencies of existing technology and to demonstrate a new isolation device for decreasing the gene flow distance of GM maize. The isolation device we invented was shown to be more robust than traditional isolation methods, and it can be disassembled and repeatedly reused. The most important point was that the frequency of gene flow could be greatly reduced using this device. When the distance from the isolation device was more than 1 m, the gene flow rate could be decreased to less than 1%, and when the distance from the isolation device was more than 10 m, the gene flow rate could be reduced to less than 0.1%. When the isolation device was adopted to isolate GM maize in conjunction with bagging the tassels of GM maize at the pollination stage, the gene flow could be controlled to less than 0.1% when the distance from the isolation device was more than 1 m. This device was, however, only applicable for small plots and can shorten the isolation distance of GM maize planting and improve the purity of seeds, all while meeting the needs of close isolation breeding. The use of this device represents a feasible method for risk prevention and control of GM crops.

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0249700
Author(s):  
Bo-Jein Kuo ◽  
Yun-Syuan Jhong ◽  
Tien-Joung Yiu ◽  
Yuan-Chih Su ◽  
Wen-Shin Lin

With the recent advent of genetic engineering, numerous genetically modified (GM) crops have been developed, and field planting has been initiated. In open-environment cultivation, the cross-pollination (CP) of GM crops with wild relatives, conventional crops, and organic crops can occur. This exchange of genetic material results in the gene flow phenomenon. Consequently, studies of gene flow among GM crops have primarily focused on the extent of CP between the pollen source plot and the adjacent recipient field. In the present study, Black Pearl Waxy Corn (a variety of purple glutinous maize) was used to simulate a GM-maize pollen source. The pollen recipient was Tainan No. 23 Corn (a variety of white glutinous maize). The CP rate (%) was calculated according to the xenia effect on kernel color. We assessed the suitability of common empirical models of pollen-mediated gene flow (PMGF) for GM maize, and the field border (FB) effect of the model was considered for small-scale farming systems in Asia. Field-scale data were used to construct an optimal model for maize PMGF in the maize-producing areas of Chiayi County, southern Taiwan (R.O.C). Moreover, each model was verified through simulation and by using the 95% percentile bootstrap confidence interval length. According to the results, a model incorporating both the distance from the source and the FB can have optimal fitting and predictive abilities.


2007 ◽  
Vol 158 (8) ◽  
pp. 235-242 ◽  
Author(s):  
Hans Rudolf Heinimann

The term «precision forestry» was first introduced and discussed at a conference in 2001. The aims of this paper are to explore the scientific roots of the precision concept, define «precision forestry», and sketch the challenges that the implementation of this new concept may present to practitioners, educators, and researchers. The term «precision» does not mean accuracy on a small scale, but instead refers to the concurrent coordination and control of processes at spatial scales between 1 m and 100 km. Precision strives for an automatic control of processes. Precision land use differs from precision engineering by the requirements of gathering,storing and managing spatio-temporal variability of site and vegetation parameters. Practitioners will be facing the challenge of designing holistic, standardized business processes that are valid for whole networks of firms,and that follow available standards (e.g., SCOR, WoodX). There is a need to educate and train forestry professionals in the areas of business process re-engineering, computer supported management of business transactions,methods of remote sensing, sensor technology and control theory. Researchers will face the challenge of integrating plant physiology, soil physics and production sciences and solving the supply chain coordination problem (SCCP).


Author(s):  
Anthony Ryan Hatch ◽  
Julia T. Gordon ◽  
Sonya R. Sternlieb

The new artificial pancreas system includes a body-attached blood glucose sensor that tracks glucose levels, a worn insulin infusion pump that communicates with the sensor, and features new software that integrates the two systems. The artificial pancreas is purportedly revolutionary because of its closed-loop design, which means that the machine can give insulin without direct patient intervention. It can read a blood sugar and administer insulin based on an algorithm. But, the hardware for the corporate artificial pancreas is expensive and its software code is closed-access. Yet, well-educated, tech-savvy diabetics have been fashioning their own fully automated do-it-yourself (DIY) artificial pancreases for years, relying on small-scale manufacturing, open-source software, and inventive repurposing of corporate hardware. In this chapter, we trace the corporate and DIY artificial pancreases as they grapple with issues of design and accessibility in a content where not everyone can become a diabetic cyborg. The corporate artificial pancreas offers the cyborg low levels of agency and no ownership and control over his or her own data; it also requires access to health insurance in order to procure and use the technology. The DIY artificial pancreas offers patients a more robust of agency but also requires high levels of intellectual capital to hack the devices and make the system work safely. We argue that efforts to increase agency, radically democratize biotechnology, and expand information ownership in the DIY movement are characterized by ideologies and social inequalities that also define corporate pathways.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Mohd Helmi Sani ◽  
Frank Baganz

At present, there are a number of commercial small scale shaken systems available on the market with instrumented controllable microbioreactors such as Micro–24 Microreactor System (Pall Corporation, Port Washington, NY) and M2P Biolector, (M2P Labs GmbH, Aachen, Germany). The Micro–24 system is basically an orbital shaken 24–well plate that operates at working volume 3 – 7 mL with 24 independent reactors (deep wells, shaken and sparged) running simultaneously. Each reactor is designed as single use reactor that has the ability to continuously monitor and control the pH, DO and temperature. The reactor aeration is supplied by sparging air from gas feeds that can be controlled individually. Furthermore, pH can be controlled by gas sparging using either dilute ammonia or carbon dioxide directly into the culture medium through a membrane at the bottom of each reactor. Chen et al., (2009) evaluated the Micro–24 system for the mammalian cell culture process development and found the Micro–24 system is suitable as scaledown tool for cell culture application. The result showed that intra-well reproducibility, cell growth, metabolites profiles and protein titres were scalable with 2 L bioreactors.


2011 ◽  
Vol 301-303 ◽  
pp. 1714-1718
Author(s):  
Ji Meng Zhang ◽  
Hong Shuo Wang ◽  
Ben De Gan

In the automatic control system of industrial field, the production process monitoring and control process is dependent on Mutual coordination of various automation instrument, computer and corresponding actuators. The coordination is accurate or not, the key is signal transmission quality among those agencies. The application and selection of isolation device directly affect signal transmission. This paper discusses the application and choose of industrial site isolator from isolation principle, the principle and choose for isolator, commissioning and parameter selection based on practical application.


Author(s):  
Juan Chen ◽  
Tao Zhou ◽  
Zhousen Hou ◽  
Canhui Sun

Partial loss of reactor coolant flow is one of the most important transients for safety analysis of supercritical water-cooled reactor (SCWR). Taking the super LWR concept provided by Japan as research object, transient analysis of partial loss of coolant flow rate is given by coupled neutronics and thermal hydraulics calculation method. The results show that, when 5% partial loss of coolant flow is happening, maximum cladding temperature would increase firstly with the decreasing of fuel channel inlet coolant flow. Then followed with the neutronic feedback and control operation, maximum cladding temperature decreases and finally return to normal. When 50% partial loss of coolant flow is happening, a scram signal will be given to ensure system safety, but the maximum cladding temperature still shows a significant increase early. On this basis, sensitivity analysis is performed considering the influence of core power and main coolant flow. It is found that maximum peaking value increases significantly following the initial flow rate decreasing, but shows a very little increase caused by core power increasing.


Author(s):  
Kelly O'Neill

This chapter examines the flow of goods across and through Crimea in an attempt to understand the impact of Russian rule on the economic landscape. It focuses on the patterns of exchange and consumption, arguing for the significance of small-scale transactions for understanding the economic geography of the region. While Russian officials were eager to facilitate and control Black Sea trade, farmers and gardeners and craftsmen began participating in the system of overland markets and fairs that connected the southern provinces to merchants and consumers everywhere from Kharkov and Moscow to Nizhnii Novgorod and Kazan. The Crimean economy thus moved southward toward Constantinople and northward toward Moscow, yet the towns of the peninsula remained key nodes of consumption and production, the orchards and vineyards key sites of prosperity.


2021 ◽  
Vol 13 (20) ◽  
pp. 11295
Author(s):  
Ali Babaeebazaz ◽  
Shiva Gorjian ◽  
Majid Amidpour

In this study, a small-scale two-stage multi-stage flash (MSF) desalination unit equipped with a vacuum pump and a solar parabolic collector (PDC) with a conical cavity receiver were integrated. To eliminate the need for heat exchangers, a water circulation circuit was designed in a way that the saline feedwater could directly flow through the receiver of the PDC. The system’s performance was examined during six days in July 2020, from 10:00 a.m. to 3:00 p.m., under two distinct scenarios of the MSF desalination operation under the vacuum (−10 kPa) and atmospheric pressure by considering three saline feedwater water flow rates of 0.7, 1 and 1.3 L/min. Furthermore, the performance of the solar PDC-MSF desalination plant was evaluated by conducting energy and exergy analyses. The results indicated that the intensity of solar radiation, which directly affects the top brine temperature (TBT), and the values of the saline feedwater flow rate have the most impact on productivity. The maximum productivity of 3.22 L per 5 h in a day was obtained when the temperature and saline feedwater flow rate were 94.25 °C (at the maximum solar radiation of 1015.3 W/m2) and 0.7 L/min, respectively, and the MSF was under vacuum pressure. Additionally, it was found that increasing the feedwater flow rate from 0.7 to 1.3 L/min reduces distillate production by 76.4% while applying the vacuum improves the productivity by about 34% at feedwater flow rate of 0.7 L/min. The exergy efficiency of the MSF unit was obtained as 0.07% with the highest share of exergy destruction in stages. The quality parameters of the produced distillate including pH, TDS, EC and DO were measured, ensuring they lie within the standard range for drinking water. Moreover, the cost of freshwater produced by the MSF plant varied from 37 US$/m3 to 1.5 US$/m3 when the treatment capacity increased to 8000 L/day.


2020 ◽  
Vol 3 (1) ◽  
pp. 10-20
Author(s):  
Ahmad Azaini Abdul Manaf ◽  
Fytullah Hamzah ◽  
Azwan Abidin

Self-employment and self-entrepreneurship activities among graduates in local and global economic trends lead to the birth of small scale animation studios. Government funding and business exposure in higher learning institutions are driving the young workforce to establish their own company rather than working for others. The current generations of graduates are very much in favor of entrepreneurship and begin to break away from the notion of stability in conventional professions due to the lack of flexible work-life balance and office benefits. Company ownership and financial freedom self-management remain the most recent phenomena in today's graduates. The idea of maintaining self-expression and control of the personal intellectual property is driving the young animator to venture into a small scale studio setup (4S).


Sign in / Sign up

Export Citation Format

Share Document