scholarly journals An optimized desuccinylase activity assay reveals a difference in desuccinylation activity between proliferative and differentiated cells

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Taolin Yuan ◽  
Jaap Keijer ◽  
Angela H. Guo ◽  
David B. Lombard ◽  
Vincent C. J. de Boer

Abstract Succinylation is a novel post-translational modification identified on many proteins and is involved in multiple biological processes. Succinylation levels are dynamically regulated, balanced by succinylation and desuccinylation processes, and are closely connected to metabolic state in vivo. Sirtuins have been shown to possess NAD+-dependent desuccinylation activity in vitro and in vivo, among which the desuccinylation activity of SIRT5 is most extensively studied. Our understanding of the response of succinylation levels to different metabolic conditions, is hampered by the lack of a fast NAD+-dependent desuccinylation assay in a physiological context. In the present study, we therefore optimized and validated a fluorescence-based assay for measuring NAD+-dependent desuccinylation activity in cell lysates. Our results demonstrated that shorter and stricter reaction time was critical to approach the initial rate of NAD+-dependent desuccinylation activity in crude cell lysate systems, as compared to the desuccinylation reaction of purified His-SIRT5. Analysis of desuccinylation activity in SIRT5 knockout HEK293T cells confirmed the relevance of SIRT5 in cellular desuccinylation activity, as well as the presence of other NAD+-dependent desuccinylase activities. In addition, we were able to analyse desuccinylation and deacetylation activity in multiple cell lines using this assay. We showed a remarkably higher desuccinylase activity, but not deacetylase activity, in proliferative cultured muscle and adipose cells in comparison with their differentiated counterparts. Our results reveal an alteration in NAD+-dependent desuccinylation activity under different metabolic states.

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.


2004 ◽  
Vol 385 (1) ◽  
pp. 309-317 ◽  
Author(s):  
Zhefeng ZHAO ◽  
Joanna GRUSZCZYNSKA-BIEGALA ◽  
Anna ZOLKIEWSKA

The extracellular domain of integrin α7 is ADP-ribosylated by an arginine-specific ecto-ADP-ribosyltransferase after adding exogenous NAD+ to intact C2C12 skeletal muscle cells. The effect of ADP-ribosylation on the structure or function of integrin α7β1 has not been explored. In the present study, we show that ADP-ribosylation of integrin α7 takes place exclusively in differentiated myotubes and that this post-translational modification modulates the affinity of α7β1 dimer for its ligand, laminin. ADP-ribosylation in the 37-kDa ‘stalk’ region of α7 that takes place at micromolar NAD+ concentrations increases the binding of the α7β1 dimer to laminin. Increased in vitro binding of integrin α7β1 to laminin after ADP-ribosylation of the 37-kDa fragment of α7 requires the presence of Mn2+ and it is not observed in the presence of Mg2+. In contrast, ADP-ribosylation of the 63-kDa N-terminal region comprising the ligand-binding site of α7 that occurs at approx. 100 μM NAD+ inhibits the binding of integrin α7β1 to laminin. Furthermore, incubation of C2C12 myotubes with NAD+ increases the expression of an epitope on integrin β1 subunit recognized by monoclonal antibody 9EG7. We discuss our results based on the current models of integrin activation. We also hypothesize that ADP-ribosylation may represent a mechanism of regulation of integrin α7β1 function in myofibres in vivo when the continuity of the membrane is compromised and NAD+ is available as a substrate for ecto-ADP-ribosylation.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Constance Schmelzer ◽  
Mitsuaki Kitano ◽  
Gerald Rimbach ◽  
Petra Niklowitz ◽  
Thomas Menke ◽  
...  

MicroRNAs (miRs) are involved in key biological processes via suppression of gene expression at posttranscriptional levels. According to their superior functions, subtle modulation of miR expression by certain compounds or nutrients is desirable under particular conditions. Bacterial lipopolysaccharide (LPS) induces a reactive oxygen species-/NF-κB-dependent pathway which increases the expression of the anti-inflammatory miR-146a. We hypothesized that this induction could be modulated by the antioxidant ubiquinol-10. Preincubation of human monocytic THP-1 cells with ubiquinol-10 reduced the LPS-induced expression level of miR-146a to 78.9±13.22%. In liver samples of mice injected with LPS, supplementation with ubiquinol-10 leads to a reduction of LPS-induced miR-146a expression to 78.12±21.25%. From these consistent in vitro and in vivo data, we conclude that ubiquinol-10 may fine-tune the inflammatory response via moderate reduction of miR-146a expression.


1984 ◽  
Vol 4 (9) ◽  
pp. 1843-1852
Author(s):  
R J Focht ◽  
S L Adams

We analyzed the control of type I collagen synthesis in four kinds of differentiated cells from chicken embryos which synthesize very different amounts of the protein. Tendon, skin, and smooth muscle cells were found to have identical amounts of type I collagen RNAs; however, the RNAs had inherently different translatabilities, which were observed both in vivo and in vitro. Chondrocytes also had substantial amounts of type I collagen RNAs, even though they directed no detectable synthesis of the protein either in vivo or in vitro. Type I collagen RNAs in chondrocytes display altered electrophoretic mobilities, suggesting that in these cells the reduction in translational efficiency may be mediated in part by changes in the RNA structure. These data indicate that control of type I collagen gene expression is a complex process which is exerted at both transcriptional and post-transcriptional levels.


2018 ◽  
Vol 115 (51) ◽  
pp. 12997-13002 ◽  
Author(s):  
Charlotte Steenblock ◽  
Maria F. Rubin de Celis ◽  
Luis F. Delgadillo Silva ◽  
Verena Pawolski ◽  
Ana Brennand ◽  
...  

The adrenal gland is a master regulator of the human body during response to stress. This organ shows constant replacement of senescent cells by newly differentiated cells. A high degree of plasticity is critical to sustain homeostasis under different physiological demands. This is achieved in part through proliferation and differentiation of adult adrenal progenitors. Here, we report the isolation and characterization of a Nestin+ population of adrenocortical progenitors located under the adrenal capsule and scattered throughout the cortex. These cells are interconnected with progenitors in the medulla. In vivo lineage tracing revealed that, under basal conditions, this population is noncommitted and slowly migrates centripetally. Under stress, this migration is greatly enhanced, and the cells differentiate into steroidogenic cells. Nestin+ cells cultured in vitro also show multipotency, as they differentiate into mineralocorticoid and glucocorticoid-producing cells, which can be further influenced by the exposure to Angiotensin II, adrenocorticotropic hormone, and the agonist of luteinizing hormone-releasing hormone, triptorelin. Taken together, Nestin+ cells in the adult adrenal cortex exhibit the features of adrenocortical progenitor cells. Our study provides evidence for a role of Nestin+ cells in organ homeostasis and emphasizes their role under stress. This cell population might be a potential source of cell replacement for the treatment of adrenal insufficiency.


2019 ◽  
Author(s):  
Chenghua Luo ◽  
Dengyu Ji ◽  
Yan Li ◽  
Yan Cao ◽  
Shangyue Zhang ◽  
...  

ABSTRACTSp1 (Specificity protein 1)-CSE (cystathionine-γ-lyase)-H2S (hydrogen sulfide) pathway plays an important role in homocysteine-metabolism, whose disorder can result in hyperhomocysteinemia. The deficiency of plasma H2S in patients and animal models with hyperhomocysteinemia has been reported but it is unclear whether this deficiency plays a role in the progress of hyperhomocysteinemia. Furthermore, it remains unknown whether the post-translational modification of Sp1 or CSE mediated by hyperhomocysteinemia itself can in turn affect the development of hyperhomocysteinemia. By both in vivo and in vitro studies, we conducted immunoprecipitation and maleimide assays to detect the post-translational modification of Sp1-CSE-H2S pathway and revealed four major findings: (1) the accumulation of homocysteine augmented the nitration of CSE, thus blunted its bio-activity and caused H2S deficiency. (2) H2S deficiency lowered the S-sulfhydration of Sp1 and inhibited its transcriptional activity, resulted in lower expression of CSE. CSE deficiency decreased the H2S level further, which in turn lowered the S-sulfhydration level of CSE. (3) CSE was S-sulfhydrated at Cys84, Cys109, Cys172, Cys229, Cys252, Cys307 and Cys310 under physiological conditions, mutation of Cys84, Cys109, Cys229, Cys252 and Cys307 decreased its S-sulfhydration level and bio-activity. (4) H2S deficiency could trap hyperhomocysteinemia into a progressive vicious circle and trigger a rapid increase of homocysteine, while blocking nitration or restoring S-sulfhydration could break this circle. In conclusion, this study reveals a novel mechanism involved in the disorder of homocysteine-metabolism, which may provide a candidate therapeutic strategy for hyperhomocysteinemia.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Takashi Fujii ◽  
Shun Yamamuro ◽  
Masamichi Takahashi ◽  
Akihide Kondo ◽  
Yoshitaka Narita ◽  
...  

Abstract The therapeutic outcome of glioblastomas (GBMs) is still very poor. Therefore, invention of novel therapeutic methods against GBM cases is considered urgent. The antitumor effects of naturally-derived compounds are attracting attention recently, and therapeutic efficacy of curcumin, a plant-derived compound previously used for multiple purpose, has been indicated in many cancer systems; however, clinical application of curcumin is considered difficult because of its poor bioavailability (under 1 %). Curcumin monoglucuronide (CMG), a water-soluble prodrug of curcumin recently developed for overcoming this weakness, has been demonstrated excellent antitumor effects for several malignancies in vitro and in vivo; therefore, we investigated the effects of CMG against GBM cells. CMG induced cell death of human GBM cells lines (T98G, U251MG, and U87MG) by dose dependent manner by triggering multiple forms of cell death such as apoptosis and perthanatos. Immunoblotting of CMG-treated GBM cell lysates demonstrated activation of multiple cell death signaling. Furthermore, immunodeficiency mice harboring intracerebral U87MG cell xenografts systemically treated by CMG showed significantly prolonged survival compared with control mice. These results suggest CMG would be a novel therapeutic agent against GBM cases.


2018 ◽  
Vol 1 ◽  
Author(s):  
Quynh H. Duong ◽  
Karen G. Lapsley ◽  
Ronald B. Pegg

Inositol phosphates (InsPs), especially myo-inositol hexakisphosphate (InsP6), are important binders of phosphorus and minerals in plant seeds. However, they have long been considered as anti-nutritional components of plant foods due to their possible negative effects on the absorption of minerals and proteins in mammals. On the other hand, recent findings have found InsPs to be ubiquitous in eukaryote cells and actively participating in multiple cell functions. In vivo and in vitro studies have also documented the preventive potential of these compounds against the development of a wide range of diseases. In light of these findings, interest in the relationship between these compounds and human health has been renewed. It is suggested that the interactions of InsPs with other nutrients in the gut are complex, that the absorption of dietary InsPs might be implied but is not certain, and that the disease fighting capabilities of InsPs hold both promises and limitations. At the same time, the analysis of these compounds in foods and biological samples still faces many challenges, calling for more advanced modification and developments in the future.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mark Austin Hanson ◽  
Anna Dostálová ◽  
Camilla Ceroni ◽  
Mickael Poidevin ◽  
Shu Kondo ◽  
...  

Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete most known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking these ten AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Liping Dou ◽  
Fei Yan ◽  
Jiuxia Pang ◽  
Dehua Zheng ◽  
Dandan Li ◽  
...  

Abstract The oncogenic fusion protein AML1-ETO retains the ability of AML1 to interact with the enhancer core DNA sequences, but blocks AML1-dependent transcription. Previous studies have shown that post-translational modification of AML1-ETO may play a role in its regulation. Here we report that AML1-ETO-positive patients, with high histone lysine methyltransferase Enhancer of zeste homolog 1 (EZH1) expression, show a worse overall survival than those with lower EZH1 expression. EZH1 knockdown impairs survival and proliferation of AML1-ETO-expressing cells in vitro and in vivo. We find that EZH1 WD domain binds to the AML1-ETO NHR1 domain and methylates AML1-ETO at lysine 43 (Lys43). This requires the EZH1 SET domain, which augments AML1-ETO-dependent repression of tumor suppressor genes. Loss of Lys43 methylation by point mutation or domain deletion impairs AML1-ETO-repressive activity. These findings highlight the role of EZH1 in non-histone lysine methylation, indicating that cooperation between AML1-ETO and EZH1 and AML1-ETO site-specific lysine methylation promote AML1-ETO transcriptional repression in leukemia.


Sign in / Sign up

Export Citation Format

Share Document