scholarly journals Comparison of wavelength selection methods for in-vitro estimation of lactate: a new unconstrained, genetic algorithm-based wavelength selection

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohammad Mamouei ◽  
Karthik Budidha ◽  
Nystha Baishya ◽  
Meha Qassem ◽  
Panayiotis Kyriacou

Abstract Biochemical and medical literature establish lactate as a fundamental biomarker that can shed light on the energy consumption dynamics of the body at cellular and physiological levels. It is therefore, not surprising that it has been linked to many critical conditions ranging from the morbidity and mortality of critically ill patients to the diagnosis and prognosis of acute ischemic stroke, septic shock, lung injuries, insulin resistance in diabetic patients, and cancer. Currently, the gold standard for the measurement of lactate requires blood sampling. The invasive and costly nature of this procedure severely limits its application outside intensive care units. Optical sensors can provide a non-invasive, inexpensive, easy-to-use, continuous alternative to blood sampling. Previous efforts to achieve this have shown significant potential, but have been inconclusive. A measure that has been previously overlooked in this context, is the use of variable selection methods to identify regions of the optical spectrum that are most sensitive to and representative of the concentration of lactate. In this study, several wavelength selection methods are investigated and a new genetic algorithm-based wavelength selection method is proposed. This study shows that the development of more accurate and parsimonious models for optical estimation of lactate is possible. Unlike many existing methods, the proposed method does not impose additional locality constraints on the spectral features and therefore helps provide a much more granular interpretation of wavelength importance.

2021 ◽  
Author(s):  
Benjamin Panzer ◽  
Patricia P Wadowski ◽  
Kurt Huber ◽  
Simon Panzer ◽  
Thomas Gremmel

Abstract Background: Dual antiplatelet therapy is a cornerstone in the secondary prevention of ischemic events following percutaneous coronary intervention (PCI) with stent implantation. The new, more potent adenosine diphosphate (ADP) P2Y12 receptor inhibitors prasugrel and ticagrelor have been shown to improve patients’ outcomes. Whether or not these drugs have equal efficacy in diabetic as in non-diabetic individuals is disputed. Furthermore, platelets can be activated by thrombin, which is, at least in part, independent of ADP-inducible activation. Protease-activated receptor (PAR)-1 and -4 are thrombin receptors on human platelets activated by the agonists SFLLRN and AYPGKF, respectively. In the current study, we sought to compare the in vitro efficacy of prasugrel (n=121) and ticagrelor (n=99) to inhibit PAR-mediated platelet activation in patients with type 2 diabetes (n=55).Materials and Methods: We compared P2Y12-, PAR-1- and PAR-4-mediated platelet aggregation as assessed by multiple electrode platelet aggregometry between prasugrel- and ticagrelor-treated patients without and with type 2 diabetes who underwent acute PCI. Results: There were no significant differences of on-treatment platelet aggregation in response to ADP, SFLLRN and AYPGKF between patients on prasugrel or on ticagrelor. Diabetic and non-diabetic patients responded equally. There was no significant correlation between either; ADP-, SFLLRN-, or AYPGKF-inducible platelet aggregation and levels of HbA1c or the body mass index. However, we observed patients with high residual platelet reactivity to SFLLRN and AYPGKF in all cohorts.Conclusion: Prasugrel and ticagrelor inhibit platelet aggregation in diabetic and non-diabetic patients to a similar extent.


1992 ◽  
Vol 15 (1) ◽  
pp. 55-61 ◽  
Author(s):  
F.J. Schmidt ◽  
A.L. Aalders ◽  
A.J.M. Schoonen ◽  
H. Doorenbos

Calibration of glucose sensors proved difficult for electrodes with immobilized glucose-oxidase. The correlation between the sensitivity of the electrodes in vitro and in vivo appeared to be poor. We developed a new type of glucose sensor, based on a microdialysis system, in which an oxygen electrode is used as detector outside the body and the enzyme glucose-oxidase dissolved in water is used as a dynamic selector. The enzyme solution is pumped through a hollow fiber placed subcutaneously, before the fluid passes the detector. The glucose sensor was tested in the subcutaneous abdominal tissue of 12 healthy volunteers and 12 type I diabetic patients. Blood glucose was clamped at two levels to permit a two-point calibration of the sensor in vivo. These values correlated well with the in vitro calibration factors (r=0.949). In subcutaneous tissue the sensor measures 43 ± 9% of the blood glucose value, using the in vitro calibration factor. No differences were detected between healthy volunteers and diabetic patients.


2020 ◽  
Vol 12 (20) ◽  
pp. 3426 ◽  
Author(s):  
Antonio Santos-Rufo ◽  
Francisco-Javier Mesas-Carrascosa ◽  
Alfonso García-Ferrer ◽  
Jose Emilio Meroño-Larriva

Identifying and mapping irrigated areas is essential for a variety of applications such as agricultural planning and water resource management. Irrigated plots are mainly identified using supervised classification of multispectral images from satellite or manned aerial platforms. Recently, hyperspectral sensors on-board Unmanned Aerial Vehicles (UAV) have proven to be useful analytical tools in agriculture due to their high spectral resolution. However, few efforts have been made to identify which wavelengths could be applied to provide relevant information in specific scenarios. In this study, hyperspectral reflectance data from UAV were used to compare the performance of several wavelength selection methods based on Partial Least Square (PLS) regression with the purpose of discriminating two systems of irrigation commonly used in olive orchards. The tested PLS methods include filter methods (Loading Weights, Regression Coefficient and Variable Importance in Projection); Wrapper methods (Genetic Algorithm-PLS, Uninformative Variable Elimination-PLS, Backward Variable Elimination-PLS, Sub-window Permutation Analysis-PLS, Iterative Predictive Weighting-PLS, Regularized Elimination Procedure-PLS, Backward Interval-PLS, Forward Interval-PLS and Competitive Adaptive Reweighted Sampling-PLS); and an Embedded method (Sparse-PLS). In addition, two non-PLS based methods, Lasso and Boruta, were also used. Linear Discriminant Analysis and nonlinear K-Nearest Neighbors techniques were established for identification and assessment. The results indicate that wavelength selection methods, commonly used in other disciplines, provide utility in remote sensing for agronomical purposes, the identification of irrigation techniques being one such example. In addition to the aforementioned, these PLS and non-PLS based methods can play an important role in multivariate analysis, which can be used for subsequent model analysis. Of all the methods evaluated, Genetic Algorithm-PLS and Boruta eliminated nearly 90% of the original spectral wavelengths acquired from a hyperspectral sensor onboard a UAV while increasing the identification accuracy of the classification.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1976 ◽  
Vol 15 (05) ◽  
pp. 248-253
Author(s):  
A. K. Basu ◽  
S. K. Guha ◽  
B. N. Tandon ◽  
M. M. Gupta ◽  
M. ML. Rehani

SummaryThe conventional radioisotope scanner has been used as a whole body counter. The background index of the system is 10.9 counts per minute per ml of sodium iodide crystal. The sensitivity and derived sensitivity parameters have been evaluated and found to be suitable for clinical studies. The optimum parameters for a single detector at two positions above the lying subject have been obtained. It has been found that for the case of 131I measurement it is possible to assay a source located at any point in the body with coefficient of variation less than 5%. To add to the versatility, a fixed geometry for in-vitro counting of large samples has been obtained. The retention values obtained by the whole body counter have been found to correlate with those obtained by in-vitro assay of urine and stool after intravenous administration of 51Cr-albumin.


1987 ◽  
Vol 57 (02) ◽  
pp. 201-204 ◽  
Author(s):  
P Y Scarabin ◽  
L Strain ◽  
C A Ludlam ◽  
J Jones ◽  
E M Kohner

SummaryDuring the collection of samples for plasma β-thromboglobulin (β-TG) determination, it is well established that artificially high values can be observed due to in-vitro release. To estimate the reliability of a single β-TG measurement, blood samples were collected simultaneously from both arms on two separate occasions in 56 diabetic patients selected for a clinical trial. From each arm, blood was taken into two tubes containing an anticoagulant mixture with (tube A) and without (tube B) PGE!. The overall mean value of B-TG in tube B was 1.14 times higher than in tube A (p <0.01). The markedly large between-arms variation accounted for the most part of within-subject variation in both tubes and was significantly greater in tube B than in tube A. Based on the difference between B-TG values from both arms, the number of subjects with artifically high B-TG values was significantly higher in tube B than in tube A on each occasion (overall rate: 28% and 14% respectively). Estimate of between-occasions variation showed that B-TG levels were relatively stable for each subject between two occasions in each tube. It is concluded that the use of PGEi decreases falsely high B-TG levels, but a single measurement of B-TG does not provide a reliable estimate of the true B-TG value in vivo.


1985 ◽  
Vol 54 (02) ◽  
pp. 413-414 ◽  
Author(s):  
Margarethe Geiger ◽  
Bernd R Binder

SummaryWe have demonstrated previously that fibrin enhanced plasmin formation by the vascular plasminogen activator was significantly impaired, when components isolated from the plasma of three uncontrolled diabetic patients (type I) were used to study plasminogen activation in vitro. In the present study it can be demonstrated that functional properties of the vascular plasminogen activators as well as of the plasminogens from the same three diabetic patients are significantly improved after normalization of blood sugar levels and improvement of HbAlc values. Most pronounced the Km of diabetic vascular plasminogen activator in the presence of fibrin returned to normal values, and for diabetic plasminogen the prolonged lag period until maximal plasmin formation occurred was shortened to almost control values. From these data we conclude that the observed abnormalities of in vitro fibrinolysis are not primarily associated with the diabetic disease, but might be secondary to metabolic disorders caused by diabetes.


Diabetes ◽  
1989 ◽  
Vol 38 (3) ◽  
pp. 310-315 ◽  
Author(s):  
C. Giordano ◽  
F. Panto ◽  
C. Caruso ◽  
M. A. Modica ◽  
A. M. Zambito ◽  
...  

Author(s):  
Mohammed Ibrahim ◽  
Alaa Zaky ◽  
Mohsen Afouna ◽  
Ahmed Samy

Carrier erythrocytes are emerging as one of the most promising biological drug delivery systems investigated in recent decades. Beside its biocompatibility, biodegradability and ability to circulate throughout the body, it has the ability to perform extended release system of the drug for a long period. The ultimate goal of this study is to introduce a new carrier system for Salbutamol, maintaining suitable blood levels for a long time, as atrial to resolve the problems of nocturnal asthma medication Therefore in this work we study the effect of time, temperature as well as concentration on the loading of salbutamol in human erythrocytes to be used as systemic sustained release delivery system for this drug. After the loading process is performed the carrier erythrocytes were physically and cellulary characterized. Also, the in vitro release of salbutamol from carrier erythrocytes was studied over time interval. From the results it was found that, human erythrocytes have been successfully loaded with salbutamol using endocytosis method either at 25 Co or at 37 Co . The highest loaded amount was 3.5 mg/ml and 6.5 mg/ml respectively. Moreover, the percent of cells recovery is 90.7± 1.64%. Hematological parameters and osmotic fragility behavior of salbutamol loaded erythrocytes were similar that of native erythrocytes. Scanning electron microscopy demonstrated that the salbutamol loaded cells has moderate change in the morphology. Salbutamol releasing from carrier cell was 43% after 36 hours in phosphate buffer saline. The releasing pattern of the drug from loaded erythrocytes showed initial burst release in the first hour followed by a very slow release, obeying zero order kinetics. It concluded that salbutamol is successfully entrapped into erythrocytes with acceptable loading parameters and moderate morphological changes, this suggesting that erythrocytes can be used as prolonged release carrier for salbutamol.


Author(s):  
Н.В. Белобородова ◽  
В.В. Мороз ◽  
А.Ю. Бедова

Интеграция метаболизма макроорганизма и его микробиоты, обеспечивающая в норме симбиоз и саногенез, нарушается при заболеваниях, травме, критическом состоянии, и вектор взаимодействия может изменяться в пользу прокариотов по принципу «метаболиты бактерий - против хозяина». Анализ литературы показал, что, с одной стороны, имеется живой интерес к ароматическим микробным метаболитам, с другой - отсутствует четкое представление об их роли в организме человека. Публикации, касающиеся ряда ароматических микробных метаболитов (фенилкарбоновых кислот, ФКК), как правило, не связаны между собой по тематике и направлены на решение тех или иных прикладных задач в разных областях биологии и медицины. Цель обзора - анализ информации о происхождении, биологических эффектах ФКК в экспериментах in vitro и in vivo , и клинических наблюдениях. Обобщая результаты приведенных в обзоре исследований на клеточном, субклеточном и молекулярном уровнях, логично предположить участие ароматических микробных метаболитов в патогенезе полиорганной недостаточности при сепсисе. Наиболее перспективным для раскрытия роли ароматических микробных метаболитов представляется изучение механизмов вторичной почечной недостаточности и септической энцефалопатии. Важным направлением для будущих исследований является изучение влияния продуктов микробной биодеградации ароматических соединений на развитие диссеминированного внутрисосудистого свертывания крови, артериальной гипотензии и септического шока. Результаты дальнейших исследований будут иметь не только фундаментальное значение, но и обогатят практическую медицину новыми диагностическими и лечебными технологиями. Significant increases in blood concentrations of some aromatic metabolites (phenylcarboxylic acids, PhCAs) in patients with sepsis have been previously shown. Enhanced bacterial biodegradation of aromatic compounds has been demonstrated to considerably contribute to this process. Integration of macroorganism metabolism and its microbiota, which provides normal symbiosis and sanogenesis, is disturbed in diseases, trauma, and critical conditions. Direction of this interaction may change in favor of prokaryotes according to the principle, “bacterial metabolites are against the host”. Analysis of literature showed a particular interest of many investigators to aromatic microbial metabolites. However, there is no clear understanding of their role in the human body. Publications on PhCAs are generally not thematically interrelated and usually focus on solving applied tasks in different fields of biology and medicine. The aim of this work was to consolidate existing information about origin and biological effects of PhCAs in in vitro / in vivo experiments and some clinical findings. The presented summary of reported data from studies performed at cellular, sub-cellular, and molecular levels suggests participation of aromatic microbial metabolites in the pathogenesis of multiple organ failure in sepsis. Studying mechanisms of secondary renal failure and septic encephalopathy is most promising for discovering the function of aromatic microbial metabolites. Effects of microbial biodegradation products of aromatic substances on development of disseminated intravascular coagulation, hypotension, and septic shock are an important challenge for future studies. Results of further investigations will be not only fundamental, but will also enrich medical practice with new diagnostic and therapeutic technologies.


Sign in / Sign up

Export Citation Format

Share Document