scholarly journals Transcriptome analysis of alternative splicing in the pathogen life cycle in human foreskin fibroblasts infected with Trypanosoma cruzi

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hyeim Jung ◽  
Seonggyun Han ◽  
Younghee Lee

Abstract Trypanosoma cruzi is an intracellular protozoan parasite that causes Chagas disease as a zoonotic pathogen. The parasite has been shown to remodel expression in the host transcriptome under different conditions. Although alternative splicing (AS) is involved in virtually every biological function in eukaryotes, including cellular differentiation and responses to immune reactions, host AS events that occur as a result of T. cruzi infection have yet to be explored. In this study, we bioinformatically investigated the transcriptome AS dynamics of T. cruzi (Y strain) infected human foreskin fibroblasts using RNA-Seq data captured over four timepoints (4, 24, 48, and 72 h post infection (hpi)). We identified 1768, 399, 250, and 299 differentially expressed exons (AS exons) at 4, 24, 48, and 72 hpi, respectively, showing that host AS mechanism may have a significant role in the intracellular life cycle of the parasite. We present an exon skipping event in HDAC7, which is a candidate gene that is important in the parasite’s cell cycle. To sum up, this bioinformatics analysis of transcriptome may provide new potential insight into AS regulation in human foreskin fibroblast (HFF) cells infected by T. cruzi and into its implication to the parasite life cycle. Moreover, identified AS genes may provide new potential molecular candidates for improving treatment.

2002 ◽  
Vol 70 (8) ◽  
pp. 4726-4728 ◽  
Author(s):  
Rebeca Manning-Cela ◽  
Antonio González ◽  
John Swindle

ABSTRACT As a result of alternative trans splicing, three distinct LYT1 mRNAs are produced in Trypanosoma cruzi, two encoding the full-length LYT1 protein and the third encoding a truncated LYT1 protein lacking a possible signal sequence. Analysis of the three mRNAs in different developmental forms of the parasite revealed that the alternative processing events were regulated differently during the parasite life cycle.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
G. Ballesteros-Rodea ◽  
M. Santillán ◽  
S. Martínez-Calvillo ◽  
R. Manning-Cela

The hemoflagellateTrypanosoma cruziis the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known aboutT. cruzimotility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.


PEDIATRICS ◽  
1983 ◽  
Vol 71 (6) ◽  
pp. 985-985
Author(s):  
RIF S. EL-MALLAKH

To the Editor.— Mitochondrial failure, manifest by changes in mitochondrial enzyme activity1-3 and morphology,4-5 is central to Reye's syndrome (RS).6 Although it has been variously hypothesized that the mitochondrial changes are secondary to an exogenous toxin,7-12 or an intrinsic mitochondrial defect,6 the actual cause remains obscure. Electron microscopic studies have shown sweelling and loss of cristate in mitochondria of patients with RS. It is interesting that very similar changes occur in Trypanosoma cruzi.13-16 T cruzi is an extracellular/intracellular protozoan parasite which causes Chagas' disease.17


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Anne-Laure Bougé ◽  
Eva Murauer ◽  
Emmanuelle Beyne ◽  
Julie Miro ◽  
Jessica Varilh ◽  
...  

Abstract We have analysed the splicing pattern of the human Duchenne Muscular Dystrophy (DMD) transcript in normal skeletal muscle. To achieve depth of coverage required for the analysis of this lowly expressed gene in muscle, we designed a targeted RNA-Seq procedure that combines amplification of the full-length 11.3 kb DMD cDNA sequence and 454 sequencing technology. A high and uniform coverage of the cDNA sequence was obtained that allowed to draw up a reliable inventory of the physiological alternative splicing events in the muscular DMD transcript. In contrast to previous assumptions, we evidenced that most of the 79 DMD exons are constitutively spliced in skeletal muscle. Only a limited number of 12 alternative splicing events were identified, all present at a very low level. These include previously known exon skipping events but also newly described pseudoexon inclusions and alternative 3′ splice sites, of which one is the first functional NAGNAG splice site reported in the DMD gene. This study provides the first RNA-Seq-based reference of DMD splicing pattern in skeletal muscle and reports on an experimental procedure well suited to detect condition-specific differences in this low abundance transcript that may prove useful for diagnostic, research or RNA-based therapeutic applications.


2010 ◽  
Vol 78 (3) ◽  
pp. 1333-1338 ◽  
Author(s):  
O. K. Giddings ◽  
C. S. Eickhoff ◽  
N. L. Sullivan ◽  
D. F. Hoft

ABSTRACT Trypanosoma cruzi is an intracellular protozoan parasite capable of infecting through mucosal surfaces. Our laboratory has previously elucidated the anatomical routes of infection after both conjunctival and gastric challenge in mice. We have shown that chronically infected mice develop strong immune responses capable of protecting against subsequent rechallenge with virulent parasites through gastric, conjunctival, and systemic routes of infection. We have also shown that intranasal immunizations with the unique T. cruzi trans-sialidase (TS) antigen protect against gastric and systemic T. cruzi challenge. In the current work we have investigated the ability of purified TS adjuvanted with CpG-containing oligonucleotides to induce immunity against conjunctival T. cruzi challenge. We confirm that intranasal vaccinations with TS plus CpG induce TS-specific T-cell and secretory IgA responses. TS-specific secretory IgA was detectable in the tears of vaccinated mice, the initial body fluid that contacts the parasite during infectious conjunctival exposures. We further show that intranasal vaccinations with TS plus CpG protect against conjunctival T. cruzi challenge, limiting local parasite replication at the site of mucosal invasion and systemic parasite dissemination. We also provide the first direct evidence that mucosal antibodies induced by intranasal TS vaccination can inhibit parasite invasion.


2018 ◽  
Author(s):  
Jin Li ◽  
Peng Yu

AbstractPsoriasis is a chronic inflammatory disease that affects the skin, nails, and joints. For understanding the mechanism of psoriasis, though, alternative splicing analysis has received relatively little attention in the field. Here, we developed and applied several computational analysis methods to study psoriasis. Using psoriasis mouse and human datasets, our differential alternative splicing analyses detected hundreds of differential alternative splicing changes. Our analysis of conservation revealed many exon-skipping events conserved between mice and humans. In addition, our splicing signature comparison analysis using the psoriasis datasets and our curated splicing factor perturbation RNA-Seq database, SFMetaDB, identified nine candidate splicing factors that may be important in regulating splicing in the psoriasis mouse model dataset. Three of the nine splicing factors were confirmed upon analyzing the human data. Our computational methods have generated predictions for the potential role of splicing in psoriasis. Future experiments on the novel candidates predicted by our computational analysis are expected to provide a better understanding of the molecular mechanism of psoriasis and to pave the way for new therapeutic treatments.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 638-638 ◽  
Author(s):  
Naim Rashid ◽  
Stephane Minvielle ◽  
Florence Magrangeas ◽  
Mehmet Kemal Samur ◽  
Alice Clynen ◽  
...  

Abstract Alternative splicing is an important post-translational change that alters gene function. Misregulation of alternative splicing has been implicated in number of disease processes including cancer. Here we have analyzed alternative splicing in myeloma using high throughput RNA-seq. Our analytic pipeline for RNA-seq data used in this investigation not only provides information on expression levels for genes, but also provides information on the expression of known splice variants of genes (isoforms), and can identify novel exon level events across individuals (i.e. exon skipping events). We conducted a study of 328 newly-diagnosed patients with multiple myeloma treated homogeneously with novel agent combination containting lenalidomide, bortezomib and dexamethsone with or without high-dose melphalan followed by lenalidomide maintenance in the IFM/DFCI study. RNA isolated from purified CD138+ MM cells collected at the time of diagnosis and from 18 normal donor plasma cells were processed by RNA-seq (100 million paired end reads on Illumina HiSeq) and analyzed using a custom computational and statistical pipeline. Following read alignment to hg19, we utilized RSEM to quantify both gene-level and isoform-level expression of known ENSEMBL transcripts. We then implemented a novel testing approach based on compositional regression to discover genes that show significant isoform switching between the 328 MM samples and 18 Normal Plasma Cell (NPC) samples from healthy donors. Using various programs and their modifications, we also identified novel alternative splicing events, such as exon skipping and mutually exclusive exon usage, among others. Patient data for MM characteristics, cytogenetic and FISH as well as clinical survival outcomes were also analyzed and correlated with genomic data. We observed over 600 genes showing significant changes in relative isoform abundances (isoform switching) between MM and normal samples. A number of previously characterized genes including MYCL1 (adj. p = 0.0014) and CCND3 (adj. p = 0.0013), and MAP kinase-related genes (MAP3K8, MAPKAPK2, MAPKAPK3, MAP4K4) exhibited significant isoform switching compared to normal, in addition to some not well characterized genes. Genes showing the greatest magnitude of isoform switching include MEFV (adj. p = 2.7 x 10-5), showing a two fold change in the relative major isoform abundance compared to normal, and has been previously shown to have a role in lymphoid neoplasms. We applied hierarchical clustering to the isoforms showing significant changes in isoform-switching and identified 4 distinct clusters, which are currently being investigated for correlation with clinical subtypes of MM. Exon level analyses of alternative splicing events, such as exon skipping, are currently underway. Clinical data including MM characteristics, cytogenetics, FISH and survival outcomes was available for a subset of 265 patients. We found that 109 genes showed significant isoform switching between t(4;14) and non-t(4;14) patients, such as CD44 (adj. p =1.8 x 10-6) and WHSC1 (adj. p =5.1 x 10-28). Comparing del17p (28 in total) and non del17p patients, we found no significant splicing changes after multiple testing adjustment. Of these genes, only a subset (40%) were shown to be differentially expressed in terms of total gene expression, suggesting the importance of examining alternative splicing events in addition to total gene expression. With respect to treatment response, we compared the expression of gene isoforms between patients achieving complete response (CR) versus others and identified 38 isoforms associated with response to treatment (adj. p value < 0.05), with SEPT9, SLC2A5, and UBX6 having the strongest associations (adj. p-value < 3 x 10-4). Using a univariate cox regression model, 4 spliced isoforms relating to 3 genes were identified as having significant correlation with event-free survival (EFS) (FDR-adjusted cox p value < 0.05). We are in the process of now integrating the gene expression data with altered splicing data to develop an integrated survival model. In summary, this study highlights the significant frequency, biological and clinical importance of alternative splicing in MM and points to the need for evaluation of not only the expression level of genes but also post-translational modifications. The genes identified here are important targets for therapy as well as possible immune modulation. Disclosures Moreau: Celgene Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1628
Author(s):  
Rodolpho Ornitz Oliveira Souza ◽  
Marcell Crispim ◽  
Ariel Mariano Silber ◽  
Flávia Silva Damasceno

Trypanosoma cruzi is the aetiologic agent of Chagas disease, which affects people in the Americas and worldwide. The parasite has a complex life cycle that alternates among mammalian hosts and insect vectors. During its life cycle, T. cruzi passes through different environments and faces nutrient shortages. It has been established that amino acids, such as proline, histidine, alanine, and glutamate, are crucial to T. cruzi survival. Recently, we described that T. cruzi can biosynthesize glutamine from glutamate and/or obtain it from the extracellular environment, and the role of glutamine in energetic metabolism and metacyclogenesis was demonstrated. In this study, we analysed the effect of glutamine analogues on the parasite life cycle. Here, we show that glutamine analogues impair cell proliferation, the developmental cycle during the infection of mammalian host cells and metacyclogenesis. Taken together, these results show that glutamine is an important metabolite for T. cruzi survival and suggest that glutamine analogues can be used as scaffolds for the development of new trypanocidal drugs. These data also reinforce the supposition that glutamine metabolism is an unexplored possible therapeutic target.


2007 ◽  
Vol 117 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Leticia Pérez-Díaz ◽  
María Ana Duhagon ◽  
Pablo Smircich ◽  
José Sotelo-Silveira ◽  
Carlos Robello ◽  
...  

mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Jason Carnes ◽  
Suzanne M. McDermott ◽  
Kenneth Stuart

ABSTRACT Editosomes are the multiprotein complexes that catalyze the insertion and deletion of uridines to create translatable mRNAs in the mitochondria of kinetoplastids. Recognition and cleavage of a broad diversity of RNA substrates in vivo require three functionally distinct RNase III-type endonucleases, as well as five additional editosome proteins that contain noncatalytic RNase III domains. RNase III domains have recently been identified in the editosome accessory proteins KREPB9 and KREPB10, suggesting a role related to editing endonuclease function. In this report, we definitively show that KREPB9 and KREPB10 are not essential in either bloodstream-form parasites (BF) or procyclic-form parasites (PF) by creating null or conditional null cell lines. While preedited and edited transcripts are largely unaffected by the loss of KREPB9 in both PF and BF, loss of KREPB10 produces distinct responses in BF and PF. BF cells lacking KREPB10 also lack edited CYb, while PF cells have increased edited A6, RPS12, ND3, and COII after loss of KREPB10. We also demonstrate that mutation of the RNase III domain of either KREPB9 or KREPB10 results in decreased association with ~20S editosomes. Editosome interactions with KREPB9 and KREPB10 are therefore mediated by the noncatalytic RNase III domain, consistent with a role in endonuclease specialization in Trypanosoma brucei. IMPORTANCE Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness. U insertion/deletion RNA editing in T. brucei generates mature mitochondrial mRNAs. Editing is essential for survival in mammalian hosts and tsetse fly vectors and is differentially regulated during the parasite life cycle. Three multiprotein “editosomes,” typified by exclusive RNase III endonucleases that act at distinct sites, catalyze editing. Here, we show that editosome accessory proteins KREPB9 and KREPB10 are not essential for mammalian blood- or insect-form parasite survival but have specific and differential effects on edited RNA abundance in different stages. We also characterize KREPB9 and KREPB10 noncatalytic RNase III domains and show they are essential for editosome association, potentially via dimerization with RNase III domains in other editosome proteins. This work enhances the understanding of distinct editosome and accessory protein functions, and thus differential editing, during the parasite life cycle and highlights the importance of RNase III domain interactions to editosome architecture.


Sign in / Sign up

Export Citation Format

Share Document