scholarly journals Harvesting energy from sun, outer space, and soil

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanpei Tian ◽  
Xiaojie Liu ◽  
Fangqi Chen ◽  
Yi Zheng

AbstractWhile solar power systems have offered a wide variety of electricity generation approaches including photovoltaics, solar thermal power systems, and solar thermoelectric generators, the ability to generate electricity at both the daytime and nighttime with no necessity of energy storage remains challenging. Here, we propose and verify an environment-friendly, sustainable, and cost-effective strategy of harvesting solar energy by solar heating during the daytime and harnessing the coldness of the outer space through radiative cooling to produce electricity at night using a commercial thermoelectric module. It enables electricity generation for 24 h a day. We experimentally demonstrate a peak power density of 37 mW/m$$^2$$ 2 at night and a peak value of 723 mW/m$$^2$$ 2 during the daytime. A theoretical model that accurately predicts the performance of the device is developed and validated. The feature of 24-h electricity generation shows great potential energy applications of off-grid and battery-free lighting and sensing.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5574 ◽  
Author(s):  
Quinn Daigle ◽  
Paul G. O’Brien

Luminescent solar concentrators (LSCs) are a promising technology for integration and renewable energy generation in buildings because they are inexpensive, lightweight, aesthetically versatile, can concentrate both direct and diffuse light and offer wavelength-selective transparency. LSCs have been extensively investigated for applications involving photovoltaic electricity generation. However, little work has been done to investigate the use of thermal energy generated at the edges of LSCs, despite the potential for harnessing a broad range of solar thermal energy. In this work, Newton’s law of cooling is used to measure the thermal power generated at the edge of LSC modules subjected to solar-simulated radiation. Results show that the dye in single-panel LSC modules can generate 17.9 W/m2 under solar-simulated radiation with an intensity of 23.95 mW/cm2 over the spectral region from 360 to 1000 nm. Assuming a mean daily insolation of 5 kWh/m2, the dye in the single-panel LSC modules can generate ~100 kWh/m2 annually. If the surface area of a building is comparable to its floor space, thermal energy generated from LSCs on the buildings surface could be used to substantially reduce the buildings energy consumption.


2021 ◽  
Vol 242 ◽  
pp. 01003
Author(s):  
Md. Sakib Hossain ◽  
Soad Shajid

Electricity generation using solar thermal power systems can be made more efficient and both technically and economically feasible in countries receiving moderate solar radiation like Bangladesh through thorough optimization of different parts of the power plant. In this paper a theoretical and mathematical framework for optimization of a 150 MW solar tower thermal power plant in Bangladesh which uses molten salt as HTF has been developed by applying different methods of selecting crucial design aspects, such as design point DNI, solar multiple, design point temperature etc. after selecting the most appropriate location based on GHI and DNI data. The effect of these design aspects on the overall design of the power plant including the number of heliostats, solar field land area, tower height, receiver dimensions etc. have also been studied and finally the performance analysis of the power plant has been conducted. Analysis of performance reveals that the optimized power plant would be able to deliver 528.66 GW-h electricity annually to the national grid while operating at a capacity factor of 40.2% and gross-net conversion efficiency of 88.635%. The promising performance of the power plant would encourage further research and innovation regarding large scale electricity generation from solar energy in Bangladesh.


2018 ◽  
Vol 8 (10) ◽  
pp. 1726 ◽  
Author(s):  
Yu Huang ◽  
Qingshan Xu ◽  
Guang Lin

The great proliferation of wind power generation has brought about great challenges to power system operations. To mitigate the ramifications of wind power uncertainty on operational reliability, predictive scheduling of generation and transmission resources is required in the day-ahead and real-time markets. In this regard, this paper presents a risk-averse stochastic unit commitment model that incorporates transmission reserves to flexibly manage uncertainty-induced congestion. In this two-settlement market framework, the key statistical features of line flows are extracted using a high-dimensional probabilistic collocation method in the real-time dispatch, for which the spatial correlation between wind farms is also considered. These features are then used to quantify transmission reserve requirements in the transmission constraints at the day-ahead stage. Comparative studies on the IEEE 57-bus system demonstrate that the proposed method outperforms the conventional unit commitment (UC) to enhance the system reliability with wind power integration while leading to more cost-effective operations.


Author(s):  
John D. Flotterud ◽  
Christopher J. Damm ◽  
Benjamin J. Steffes ◽  
Jennifer J. Pfaff ◽  
Matthew J. Duffy ◽  
...  

The purpose of this paper is to describe a micro-combined heat and power system, sized for residential distributed power generation, which was designed, constructed, and installed in the Advanced Energy Technologies Laboratory at the Milwaukee School of Engineering. The installation began as a Mechanical Engineering senior design project, in which students evaluated potential methods for distributed residential combined heat and power systems. Potential systems were evaluated based on cost-effectiveness in supplying the energy requirements of a typical residence in Milwaukee, WI, and they were also judged on their environmental impacts. Initial feasibility studies, undertaken with consideration of Milwaukee’s climatic conditions, found that a natural gas-fired, reciprocating engine-generator set with heat recovery exchangers could best meet the energy needs of a typical residence in a cost-effective manner. Following the design, fabrication, and installation of the system in the laboratory, the team designed and performed experiments to quantify the system performance. The system is currently configured to deliver 2 kW of electric power and 6 kW of thermal power, achieving an overall efficiency of 72%. The system is now used in two courses: Applied Thermodynamics, and Advanced Energy Technologies. During the cogeneration laboratories performed in these courses, students decide which measurements are needed and use the collected data to compute performance parameters, to complete an energy balance, and to perform a second-law analysis of the system.


2018 ◽  
Vol 2 (9) ◽  
pp. 2060-2067 ◽  
Author(s):  
A. Vossier ◽  
J. Zeitouny ◽  
E. A. Katz ◽  
A. Dollet ◽  
G. Flamant ◽  
...  

Hybrid solar photovoltaic (PV)/thermal power systems offer the possibility of dispatchable, affordable and efficient solar electricity production – the type of transformative innovation needed for solar cell devices to realize high grid penetration.


Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


Author(s):  
B. Khadambari ◽  
S. S. Bhattacharya

Solar has become one of the fastest growing renewable energy sources. With the push towards sustainability it is an excellent solution to resolve the issue of our diminishing finite resources. Alternative photovoltaic systems are of much importance to utilize solar energy efficiently. The Cu-chalcopyrite compounds CuInS2 and CuInSe2 and their alloys provide absorber material of high absorption coefficients of the order of 105 cm-1. Cu2ZnSnS4 (CZTS) is more promising material for photovoltaic applications as Zn and Sn are abundant materials of earth’s crust. Further, the preparation of CZTS-ink facilitates the production of flexible solar cells. The device can be designed with Al doped ZnO as the front contact, n-type window layer (e.g. intrinsic ZnO); an n-type thin film buffer layer (e.g. CdS) and a p-type CZTS absorber layer with Molybdenum (Mo) substrate as back contact. In this study, CZTS films were synthesized by a non-vaccum solvent based process technique from a molecular-ink using a non toxic eco-friendly solvent dimethyl sulfoxide (DMSO). The deposited CZTS films were optimized and characterized by XRD, UV-visible spectroscopy and SEM.


2013 ◽  
Vol 8 (3-4) ◽  
pp. 469-478 ◽  
Author(s):  
Sandip S. Magdum ◽  
Gauri P. Minde ◽  
Upendra S. Adhyapak ◽  
V. Kalyanraman

The aim of this work was to optimize the biodegradation of polyvinyl alcohol (PVA) containing actual textile wastewater for a sustainable treatment solution. The isolated microbial consortia of effective PVA degrader namely Candida Sp. and Pseudomonas Sp., which were responsible for symbiotic degradation of chemical oxidation demand (COD) and PVA from desizing wastewater. In the process optimization, the maximum aeration was essential to achieve a high degradation rate, where as stirring enhances further degradation and foam control. Batch experiments concluded with the need of 16 lpm/l and 150 rpm of air and stirring speed respectively for high rate of COD and PVA degradation. Optimized process leads to 2 days of hydraulic retention time (HRT) with 85–90% PVA degradation. Continuous study also confirmed above treatment process optimization with 85.02% of COD and 90.3% of PVA degradation of effluent with 2 days HRT. This study gives environment friendly and cost effective solution for PVA containing textile wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document