scholarly journals Radiation-induced cell cycle perturbations: a computational tool validated with flow-cytometry data

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonardo Lonati ◽  
Sofia Barbieri ◽  
Isabella Guardamagna ◽  
Andrea Ottolenghi ◽  
Giorgio Baiocco

AbstractCell cycle progression can be studied with computational models that allow to describe and predict its perturbation by agents as ionizing radiation or drugs. Such models can then be integrated in tools for pre-clinical/clinical use, e.g. to optimize kinetically-based administration protocols of radiation therapy and chemotherapy. We present a deterministic compartmental model, specifically reproducing how cells that survive radiation exposure are distributed in the cell cycle as a function of dose and time after exposure. Model compartments represent the four cell-cycle phases, as a function of DNA content and time. A system of differential equations, whose parameters represent transition rates, division rate and DNA synthesis rate, describes the temporal evolution. Initial model inputs are data from unexposed cells in exponential growth. Perturbation is implemented as an alteration of model parameters that allows to best reproduce cell-cycle profiles post-irradiation. The model is validated with dedicated in vitro measurements on human lung fibroblasts (IMR90). Cells were irradiated with 2 and 5 Gy with a Varian 6 MV Clinac at IRCCS Maugeri. Flow cytometry analysis was performed at the RadBioPhys Laboratory (University of Pavia), obtaining cell percentages in each of the four phases in all studied conditions up to 72 h post-irradiation. Cells show early $${\text{G}}_{2}$$ G 2 -phase block (increasing in duration as dose increases) and later $${\text{G}}_{1}$$ G 1 -phase accumulation. For each condition, we identified the best sets of model parameters that lead to a good agreement between model and experimental data, varying transition rates from $${\text{G}}_{1}$$ G 1 - to S- and from $${\text{G}}_{2}$$ G 2 - to M-phase. This work offers a proof-of-concept validation of the new computational tool, opening to its future development and, in perspective, to its integration in a wider framework for clinical use.

2020 ◽  
Author(s):  
Leonardo Lonati ◽  
Sofia Barbieri ◽  
Isabella Guardamagna ◽  
Andrea Ottolenghi ◽  
Giorgio Baiocco

AbstractCell cycle progression can be studied with computational models that allow to describe and predict its perturbation by agents as ionizing radiation or drugs. Such models can then be integrated in tools for pre-clinical/clinical use, e.g. to optimize kinetically-based administration protocols of radiation therapy and chemotherapy.We present a deterministic compartmental model, specifically reproducing how cells that survive radiation exposure are distributed in the cell cycle as a function of dose and time after exposure. Model compartments represent the four cell-cycle phases, as a fuction of DNA content and time. A system of differential equations, whose parameters represent transition rates, division rate and DNA synthesis rate, describes the temporal evolution. Initial model inputs are data from unexposed cells in exponential growth. Perturbation is implemented as an alteration of model parameters that allows to best reproduce cell-cycle profiles post-irradiation. The model is validated with dedicated in vitro measurements on human lung fibroblasts (IMR90). Cells were irradiated with 2 and 5 Gy with a Varian 6 MV Clinac at IRCCS Maugeri. Flow cytometry analysis was performed at the RadBioPhys Laboratory (University of Pavia), obtaining cell percentages in each of the four phases in all studied conditions up to 72 hours post-irradiation.Cells show early G2-phase block (increasing in duration as dose increases) and later G1-phase accumulation. For each condition, we identified the best sets of model parameters that lead to a good agreement between model and experimental data, varying transition rates from G1- to S- and from G2- to M-phase.This work offers a proof-of-concept validation of the new computational tool, opening to its future development and, in perspective, to its integration in a wider framework for clinical use.Author summaryWe implemented a computational model able to describe how the progression in the cell cycle is perturbed when cells are exposed to ionizing radiation. It is known that radiation causes delays or arrest in cell cycle progression, and also that cells that are in different phases of the cycle at the time of exposure show different sensitivity to radiation. Chemotherapeutic drugs also affect cell cycle, and their action can be phase-specific. These findings can be exploited to find the optimal protocol of a combined radiotherapy/chemotherapy cancer treatment: to this aim, we need to know not only the effectiveness of an agent (dose/drug) in terms of cell killing, but also how surviving cells are distributed in the cell cycle. With the model we present, this information can be reproduced as a function of dose and time after radiation exposure. To test the model performance we measured distributions of cells in different phases of the cycle (using flow-cytometry) for human healthy fibroblast cells exposed to X-rays. The results of this work constitute a first step for further development of our model and its future integration in a tool for pre-clinical/clinical use.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5103-5103
Author(s):  
Debajyoti Majumdar ◽  
Eric Pietras ◽  
Jason Stumhofer ◽  
Snehalata A Pawar

Abstract Background: Bone marrow (BM) failure is a common side-effect of toxicity to the hematopoietic tissue both in the clinical setting as well as in case of total body irradiation (TBI) exposure in the event of nuclear terrorism or disasters. Particularly IR-induced myelosuppression is considered a significant risk factor for infections and increased risk for long-term hematopoietic dysfunction and myelodysplasia. Although a lot is known about the key regulatory proteins of steady-state hematopoiesis, not much is known about the regulatory factors involved in stress-induced hematopoiesis. Therefore delineating the mechanisms underlying the effects of IR stress-induced hematopoiesis is critical for the development of novel interventions with the potential to prevent or alleviate IR-induced BM injury/failure. The transcription factor CCAAT/enhancer-binding protein delta (Cebpd; C/EBPδ) plays an important role in the regulation of inflammatory and stress responses, and in the innate and adaptive immune responses. We have previously reported that Cebpd-knockout (KO) mice display increased neutropenia, thrombocytopenia and myelotoxicity in response to IR exposure, which correlated with increased apoptosis of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). In the present study, we further investigated the underlying mechanisms of IR-induced bone marrow failure in the absence of C/EBPδ. Methods: Cebpd+/+and Cebpd-/- mice (C57BL/6J background) aged 3 months were exposed to 6 Gy TBI. Bone marrow mononuclear cells (BM-MNCs) were isolated from femurs and tibiae harvested at early time-points (1h, 4h and 24h) as well as 2 weeks post-irradiation. The presence of reactive oxygen species (ROS) was measured using MitoSOX and the extent of DNA damage was measured using an antibody specific to g-H2AX at the above time points. BM-MNCs were labelled with fluorophore-tagged antibodies and analyzed by flow cytometry to measure the absolute numbers of long term-HSCs, multipotent progenitors, common lymphoid progenitors and myeloid progenitors at 2 weeks post-6 Gy. The changes in cell cycle distribution in response to IR exposure will also be analyzed by flow cytometry using a DNA-binding dye in conjunction with Ki67. Results: Preliminary results reveal: (a) reduced numbers of HSCs, HPCs, common myeloid progenitors, myeloid-erythroid progenitors and granulocyte-monocyte progenitors and (b) increased accumulation of ROS and the DNA damage marker, γ-H2AX in HSCs and HPCs in Cebpd-/- mice compared to Cebpd+/+ mice at 2 weeks post-irradiation. These results suggest that C/EBPδ may play a protective role in radiation-induced bone marrow injury. Studies are underway to further examine changes in cell cycle, ROS and DNA damage in the various BM cell lineages post-TBI. (Funding support by NIGMS P20GM109005 & Department of Defense W81XWH-15-1-0489 is gratefully acknowledged) Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


Author(s):  
Ramon Lopez Perez ◽  
Franziska Münz ◽  
Jonas Kroschke ◽  
Jannek Brauer ◽  
Nils H. Nicolay ◽  
...  

2005 ◽  
Vol 288 (2) ◽  
pp. L370-L378 ◽  
Author(s):  
Trina K. Jeffery ◽  
Paul D. Upton ◽  
Richard C. Trembath ◽  
Nicholas W. Morrell

Fibroblast proliferation, differentiation, and migration contribute to the characteristic pulmonary vascular remodeling seen in primary pulmonary hypertension (PPH). The identification of mutations in the bone morphogenetic protein type II receptor (BMPRII) in PPH have led us to question what role BMPRII and its ligands play in pulmonary vascular remodeling. Thus, to further understand the functional significance of BMPRII in the pulmonary vasculature, we examined the expression of TGF-β superfamily receptors in human fetal lung fibroblasts (HFL) and investigated the role of BMP4 on cell cycle regulation, fibroblast proliferation, and differentiation. Furthermore, signaling pathways involved in these processes were examined. HFL expressed BMPRI and BMPRII mRNA and demonstrated specific I125-BMP4 binding sites. BMP4 inhibited [3H]thymidine incorporation and proliferation of HFL; protein expression was increased for the cell cycle inhibitor p21 and reduced for the positive regulators cyclin D and cdk2 by BMP4. BMP4 induced differentiation of HFL into a smooth muscle cell phenotype since protein expression of α-smooth muscle actin and smooth muscle myosin was increased. Furthermore, p38MAPK, ERK1/2, JNK, and Smad1 were phosphorylated by BMP4. Using specific MAPK inhibitors, a dominant negative Smad1 construct, and Smad1 siRNA, we found that the antiproliferative and prodifferentiation effects of BMP4 were Smad1 dependent with JNK also contributing to differentiation. Because failure of Smad phosphorylation is a major feature of BMPRII mutations, these results imply that BMPRII mutations may promote the expansion of fibroblasts resistant to the antiproliferative, prodifferentiation effects of BMPs and suggest a mechanism for the vascular obliteration seen in familial PPH.


2021 ◽  
Vol 22 (14) ◽  
pp. 7509
Author(s):  
Hai Huang ◽  
Jun-Koo Yi ◽  
Su-Geun Lim ◽  
Sijun Park ◽  
Haibo Zhang ◽  
...  

Oral cancer (OC) has been attracted research attention in recent years as result of its high morbidity and mortality. Costunolide (CTD) possesses potential anticancer and bioactive abilities that have been confirmed in several types of cancers. However, its effects on oral cancer remain unclear. This study investigated the potential anticancer ability and underlying mechanisms of CTD in OC in vivo and in vitro. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of CTD on OC cells; assessments for migration and invasion of OC cells were conducted by transwell; Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. The results revealed that CTD suppressed the proliferation, migration and invasion of oral cancer cells effectively and induced cell cycle arrest and apoptosis; regarding the mechanism, CTD bound to AKT directly by binding assay and repressed AKT activities through kinase assay, which thereby downregulating the downstream of AKT. Furthermore, CTD remarkably promotes the generation of reactive oxygen species by flow cytometry assay, leading to cell apoptosis. Notably, CTD strongly suppresses cell-derived xenograft OC tumor growth in an in vivo mouse model. In conclusion, our results suggested that costunolide might prevent progression of OC and promise to be a novel AKT inhibitor.


2021 ◽  
Vol 1031 ◽  
pp. 222-227
Author(s):  
Ekaterina A. Savinova ◽  
Elizaveta S. Ershova ◽  
Olga A. Kraevaya ◽  
Pavel A. Troshin ◽  
S.V. Kostyuk

It is important to take into consideration the new fullerene derivatives genotoxicity. In the present is study, we analyzed the new water-soluble fullerene C70 (F350) effects on the human embryonic lung fibroblasts (HELF) oxidative damage and DNA breaks. We found that the studied compound causes cellular DNA damage and affects the transcriptional activity of cell cycle and cell apoptosis regulating genes.


2017 ◽  
Vol 7 (1) ◽  
pp. 176
Author(s):  
Maryam Sadat Nezhadfazel ◽  
Kazem Parivar ◽  
Nasim Hayati Roodbari ◽  
Mitra Heydari Nasrabadi

Omentum mesenchymal stem cells (OMSCs) could be induced to differentiate into cell varieties under certain conditions. We studied differentiation of OMSCs induced by using placenta extract in NMRI mice. Mesenchymal stem cells (MSCs) were isolated from omentum and cultured with mice placenta extract. MSCs, were assessed after three passages by flow cytometry for CD90, CD44, CD73, CD105, CD34 markers and were recognized their ability to differentiate into bone and fat cell lines. Placenta extract dose was determined with IC50 test then OMSCs were cultured in DMEM and 20% placenta extract.The cell cycle was checked. OMSCs were assayed on 21 days after culture and differentiated cells were determined by flow cytometry and again processed for flow cytometry. CD90, CD44, CD73, CD105 markers were not expressed, only CD34 was their marker. OMSCs were morphologically observed. Differentiated cells are similar to the endothelial cells. Therefore, to identify differentiated cells, CD31 and FLK1 expression were measured. This was confirmed by its expression. G1 phase of the cell cycle shows that OMSCs compared to the control group, were in the differentiation phase. The reason for the differentiation of MSCs into endothelial cells was the sign of presence of VEGF factor in the medium too high value of as a VEGF secreting source.


2002 ◽  
Vol 282 (3) ◽  
pp. L448-L456 ◽  
Author(s):  
Juan Sanchez-Esteban ◽  
Yulian Wang ◽  
Lawrence A. Cicchiello ◽  
Lewis P. Rubin

Development of the pulmonary air sacs is crucial for extrauterine survival. Late fetal lung development is characterized by a thinning of the mesenchyme, which brings pneumocytes and endothelial cells into apposition. We hypothesized that mechanical stretch, simulating fetal breathing movements, plays an important role in this remodeling process. Using a Flexercell Strain Unit, we analyzed the effects of intermittent stretch on cell proliferation and apoptosis activation in fibroblasts isolated from fetal rat lungs during late development. On day 19, intermittent stretch increased cells in G0/G1 by 22% ( P = 0.001) and decreased in S phase by 50% ( P = 0.003) compared with unstretched controls. Cell proliferation analyzed by 5-bromo-2′-deoxyuridine incorporation showed a similar magnitude of cell cycle arrest ( P = 0.04). At this same gestational age, stretch induced apoptosis by two- to threefold over controls, assayed by DNA flow cytometry, terminal deoxynucleotidyl transferase-mediated dUTP-FITC nick-end labeling, and caspase-3 activation. These results indicate that mechanical stretch of fibroblasts isolated during the canalicular stage inhibits cell cycle progression and activates apoptosis. These findings are cotemporal with the mesenchymal thinning that normally occurs in situ.


2015 ◽  
Vol 10 (2) ◽  
pp. 409 ◽  
Author(s):  
Jing Lv ◽  
Ming-Qin Cao ◽  
Jian-Chun Yu

<p>The aim of the current study was to evaluate the anticancer and apoptotic effects of alantolactone pyrazoline analogue in human non-small cell lung cancer (NCI-H460) cells. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide) assay was used to evaluate the cell viability while as fluorescence microscopy was used to assess the effect on apoptosis, cellular and nuclear morphology. Flow cytometry evaluated the effect of APA on cell cycle arrest in these cells. The results revealed that APA induced potent, time and dose-dependent cytotoxic effects on the growth of NCI-H460 cells. It also inhibited colony forming tendency as well as cell invasion capability of these cancer cells. APA induced dose-dependent nuclear and cellular morphological effects including chromatin condensation and DNA fragmentation. Flow cytometry revealed that the anticancer effects of APA might be due to its cell cycle arrest inducing tendency in G0/G1 phase of the cell cycle.</p>


Sign in / Sign up

Export Citation Format

Share Document