scholarly journals Uremic serum damages endothelium by provoking excessive neutrophil extracellular trap formation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hoi Woul Lee ◽  
Victor Nizet ◽  
Jung Nam An ◽  
Hyung Seok Lee ◽  
Young Rim Song ◽  
...  

AbstractCardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Endothelial cell (EC) dysfunction is a key CKD-specific risk factor; however, the mechanisms by which uremia harms the endothelium are still unclear. We report a role for excessive neutrophil extracellular trap (NET) formation induced by uremic serum on EC injury. Level of plasma nucleosome and myeloperoxidase-DNA, established in vivo markers of NETs, as well as intracellular adhesion molecule (ICAM)-1 were measured in hemodialysis (HD) patients and healthy volunteers (HV) and their prognostic role evaluated. For in vitro studies, HV-derived neutrophils and differentiated HL-60 cells by retinoic acid were used to determine the effect of uremic serum-induced NETs on human umbilical vein EC (HUVEC). The level of in vivo NETs was significantly higher in incident HD patients compared to HV, and these markers were strongly associated with ICAM-1. Specifically, nucleosome and ICAM-1 levels were independent predictors of a composite endpoint, all-cause mortality, or vascular access failure. In vitro, HD-derived uremic serum significantly increased NET formation both in dHL-60 and isolated neutrophils compared to control serum, and these NETs decreased EC viability and induced their apoptosis. In addition, the level of ICAM-1, E-selectin and von Willebrand factor in HUVEC supernatant was significantly increased by uremic serum-induced NETs compared to control serum-induced NETs. Dysregulated neutrophil activities in the uremic milieu may play a key role in vascular inflammatory responses. The high mortality and CVD rates in ESRD may be explained in part by excessive NET formation leading to EC damage and dysfunction.

2021 ◽  
Author(s):  
Hoi Woul Lee ◽  
Victor Nizet ◽  
Jung Nam An ◽  
Hyung Seok Lee ◽  
Young Rim Song ◽  
...  

Abstract Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Endothelial cell (EC) dysfunction is a key CKD-specific risk factor; however, the mechanisms by which uremia harms the endothelium are still unclear. We report a role for excessive neutrophil extracellular trap (NET) formation induced by uremic serum on EC injury. Level of plasma nucleosome and myeloperoxidase-DNA, established in vivo markers of NETs, as well as intracellular adhesion molecule (ICAM)-1 were measured in hemodialysis (HD) patients and healthy volunteers (HV) and their prognostic role evaluated. For in vitro studies, we differentiated HL-60 cells into neutrophil-like cells (dHL-60) by applying retinoic acid and determined the effect of uremic serum on these dHL-60 and human umbilical vein EC (HUVEC). The level of in vivo NETs was significantly higher in incident HD patients compared to HV, and these markers were strongly associated with ICAM-1. Specifically, nucleosome and ICAM-1 levels were independent predictors of a composite endpoint, all-cause mortality or vascular access failure. In vitro, HD-derived serum significantly increased NET formation by dHL-60, and these NETs decreased EC viability and induced their apoptosis. In addition, the ICAM-1 level in HUVEC supernatant was significantly increased by uremic serum-induced NETs compared to control serum-induced NETs. Dysregulated neutrophil activities in the uremic milieu may play a key role in vascular inflammatory responses. The high mortality and CVD rates in ESRD may be explained in part by excessive NET formation leading to EC damage and dysfunction.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Helong Zhao ◽  
Appakkudal Anand ◽  
Ramesh Ganju

Abstract Introduction: Lipopolysaccharide (LPS) is one of the critical factors which induce endothelial inflammation during the pathogenesis of atherosclerosis, endocarditis and sepsis shock induced heart injury. The secretory Slit2 protein and its endothelial receptors Robo1 and Robo4 have been shown to regulate mobility and permeability of endothelial cells, which could be functional in regulating LPS induced endothelial inflammation. Hypothesis: We hypothesized that in addition to regulating permeability and migration of endothelial cells, Slit2-Robo1/4 signaling might regulate other LPS-induced endothelial inflammatory responses. Methods and Results: Using Human Umbilical Vein Endothelial Cells (HUVEC) culture, we observed that Slit2 treatment suppressed LPS-induced secretion of pro-inflammatory cytokines (including GM-CSF), cell adhesion molecule upregulation and monocyte (THP-1 cell) adhesion. With siRNA knock down techniques, we further confirmed that this anti-inflammatory effect is mediated by the interaction of Slit2 with its dominant receptor in endothelial cells, Robo4, though the much lesser expressed minor receptor Robo1 is pro-inflammatory. Our signaling studies showed that downstream of Robo4, Slit2 suppressed inflammatory gene expression by inhibiting the Pyk2 - NF-kB pathway following LPS-TLR4 interaction. In addition, Slit2 can induce a positive feedback to its expression and downregulate the pro-inflammatory Robo1 receptor via mediation of miR-218. Moreover, both in in vitro studies using HUVEC and in vivo mouse model studies indicated that LPS also causes endothelial inflammation by downregulating the anti-inflammatory Slit2 and Robo4 and upregulating the pro-inflammatory Robo1 during endotoxemia, especially in mouse arterial endothelial cells and whole heart. Conclusions: Slit2-Robo1/4 signaling is important in regulation of LPS induced endothelial inflammation, and LPS in turn causes inflammation by interfering with the expression of Slit2, Robo1 and Robo4. This implies that Slit2-Robo1/4 is a key regulator of endothelial inflammation and its dysregulation during endotoxemia is a novel mechanism for LPS induced cardiovascular pathogenesis.


2019 ◽  
Author(s):  
Linda Cox ◽  
Kai Walstein ◽  
Lena Völlger ◽  
Friederike Reuner ◽  
Alexandra Bick ◽  
...  

Abstract Background: There is little knowledge, whether in patients with sepsis neutrophil extracellular trap (NET) formation and NET degrading nuclease activity are altered. Thus, we tested the hypotheses that 1) NET formation from neutrophils of septic patients is increased compared to healthy volunteers, both without stimulation and following incubation with mitochondrial DNA (mtDNA), a damage-associated molecular pattern, or phorbol 12-myristate 13-acetate (PMA; positive control); and 2) serum nuclease activities are increased as well. Methods: We included 18 septic patients and 27 volunteers in this prospective observational trial while study was registered retrospectively. Blood was withdrawn and NET formation from neutrophils in vitro was quantified (average percentage of neutrophils showing NET formation on an image) without stimulation and following incubation with mtDNA (10µg/well) or PMA (25nmol). Serum nuclease activity was assessed using gel electrophoresis. Results: In contrast to our hypothesis, compared to healthy volunteers unstimulated NET release from neutrophils in septic patients was decreased by 46.3% (4.3%±1.8 SD vs. 8.2%±2.9, p≤0.0001) and 48.1% (4.9%±2.5 vs. 9.4%±5.2, p=0.002) after 2 and 4 hours of incubation. mtDNA further decreased NET formation in neutrophils from septic patients (4.7%±1.2 to 2.8%±0,8; p=0.03) but did not alter NET formation in neutrophils from volun-teers. As expected, PMA, as positive control, increased NET formation to 73.2% (±29.6) in septic patients and to 91.7% (±7.1) in volunteers after 4 hours of incubation (p=0.22). Serum nuclease activity (range: 0-6) was decreased in septic patients by 39.6% (3±2 vs 5±0; median and ICR, p=0.0001) compared to volunteers. Conclusions: Unstimulated NET formation and nuclease activity are decreased in septic patients and mtDNA can further reduce NET formation. Thus, neutrophils from septic patients show decreased NET formation in vitro despite diminished nuclease activity in vivo. Trail registration DRKS00007694, German Clinical Trials database (DRKS). Registered retrospectively 06.02.2015.


2019 ◽  
Vol 133 (7) ◽  
pp. 869-884 ◽  
Author(s):  
Xianglan Liu ◽  
Ruoxi Zhang ◽  
Jingbo Hou ◽  
Jian Wu ◽  
Maomao Zhang ◽  
...  

Abstract Background: Early strut coverage after sirolimus-eluting stent (SES) implantation is associated with the activation of inflammation, but the underlying mechanisms are not completely understood. The present study aimed to identify the relationship between the anti-inflammatory cytokine interleukin (IL) 35 (IL-35) and early strut coverage in vivo and in vitro. Methods: We utilized a retrospective study design to measure IL-35 levels in 68 stents from 68 patients with coronary artery disease and recorded serial optical coherence tomography (OCT) images (0 and 3 months) to assess stent endothelialization. The mechanism underlying the regulatory effects of IL-35 on macrophages and human umbilical vein endothelial cells (HUVECs) was also investigated. SESs were surgically implanted into the right common carotid arteries of 200 male New Zealand White rabbits receiving intravenous injections of IL-35 or a placebo. Results: At the 3-month OCT evaluation, complete endothelium coverage was correlated with IL-35 levels. IL-35 induced the activation of an anti-inflammatory M2-like macrophage phenotype by targeting the signal transducer and activators of transcription (STAT)1/4 signalling pathway, and IL-35-treated macrophages induced endothelial proliferation and alleviated endothelial dysfunction. IL-35-treated New Zealand White rabbits with implanted SESs showed lower percentages of cross-sections with an uncovered strut, elevated mean neointimal hyperplasia (NIH) thickness, and inhibited inflammatory responses. Conclusions: We investigated the effect of IL-35 expression on early stent endothelialization in vivo and in vitro and identified a crucial role for IL-35 in inducing the activation of an anti-inflammatory M2-like macrophage phenotype. The present study highlights a new therapeutic strategy for early stent endothelialization.


2020 ◽  
Vol 21 (18) ◽  
pp. 6795
Author(s):  
Piotr Wójcik ◽  
Marzena Garley ◽  
Adam Wroński ◽  
Ewa Jabłońska ◽  
Elżbieta Skrzydlewska

Psoriasis is associated with increased production of reactive oxygen species which leads to oxidative stress. As antioxidants can provide protection, the aim of this study was to evaluate the effects of cannabidiol (CBD) on neutrophil extracellular trap (NET) formation in psoriatic and healthy neutrophils. Important markers of NETosis were measured in healthy and psoriatic neutrophils after incubation with CBD, lipopolysaccharide (LPS), and LPS + CBD). The percentage of neutrophils undergoing NETosis and the level of NETosis markers (cfDNA, MPO, elastase) were higher in the neutrophils and blood plasma of psoriatic patients, compared to controls. After LPS treatment, all of the markers of NETosis, except elastase, and p47 and citrullinated histones, were increased in samples from healthy subjects and psoriasis patients. CBD reduced the concentrations of NETosis markers. This led to a reduction in NETosis, which was more pronounced in psoriatic neutrophils and neutrophils treated with LPS in both psoriatic and healthy participants. These results suggest that psoriatic patients neutrophils are at a higher risk of NETosis both in vitro and in vivo. CBD reduces NETosis, mainly in psoriatic neutrophils, possibly due to its antioxidant properties. The anti-NET properties of CBD suggest the positive effect of CBD in the treatment of autoimmune diseases.


2019 ◽  
Author(s):  
Linda Cox ◽  
Kai Walstein ◽  
Lena Völlger ◽  
Friederike Reuner ◽  
Alexandra Bick ◽  
...  

Abstract Background: There is little knowledge, whether in patients with sepsis neutrophil extracellular trap (NET) formation and NET degrading nuclease activity are altered. Thus, we tested the hypotheses that 1) NET formation from neutrophils of septic patients is increased compared to healthy volunteers, both without stimulation and following incubation with mitochondrial DNA (mtDNA), a damage-associated molecular pattern, or phorbol 12-myristate 13-acetate (PMA; positive control); and 2) serum nuclease activities are increased as well. Methods: We included 18 septic patients and 27 volunteers in this prospective observational trial while study was registered retrospectively. Blood was withdrawn and NET formation from neutrophils in vitro was quantified (average percentage of neutrophils showing NET formation on an image) without stimulation and following incubation with mtDNA (10µg/well) or PMA (25nmol). Serum nuclease activity was assessed using gel electrophoresis. Results: In contrast to our hypothesis, compared to healthy volunteers unstimulated NET release from neutrophils in septic patients was decreased by 46.3% (4.3%±1.8 SD vs. 8.2%±2.9, p≤0.0001) and 48.1% (4.9%±2.5 vs. 9.4%±5.2, p=0.002) after 2 and 4 hours of incubation. mtDNA further decreased NET formation in neutrophils from septic patients (4.7%±1.2 to 2.8%±0,8; p=0.03) but did not alter NET formation in neutrophils from volun-teers. As expected, PMA, as positive control, increased NET formation to 73.2% (±29.6) in septic patients and to 91.7% (±7.1) in volunteers after 4 hours of incubation (p=0.22). Serum nuclease activity (range: 0-6) was decreased in septic patients by 39.6% (3±2 vs 5±0; median and ICR, p=0.0001) compared to volunteers. Conclusions: Unstimulated NET formation and nuclease activity are decreased in septic patients and mtDNA can further reduce NET formation. Thus, neutrophils from septic patients show decreased NET formation in vitro despite diminished nuclease activity in vivo. Trail registration DRKS00007694, German Clinical Trials database (DRKS). Registered retrospectively 06.02.2015.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Franziska Herster ◽  
Zsofia Bittner ◽  
Nathan K. Archer ◽  
Sabine Dickhöfer ◽  
David Eisel ◽  
...  

AbstractPsoriasis is an inflammatory skin disease with strong neutrophil (PMN) infiltration and high levels of the antimicrobial peptide, LL37. LL37 in complex with DNA and RNA is thought to initiate disease exacerbation via plasmacytoid dendritic cells. However, the source of nucleic acids supposed to start this initial inflammatory event remains unknown. We show here that primary murine and human PMNs mount a fulminant and self-propagating neutrophil extracellular trap (NET) and cytokine response, but independently of the canonical NET component, DNA. Unexpectedly, RNA, which is abundant in NETs and psoriatic but not healthy skin, in complex with LL37 triggered TLR8/TLR13-mediated cytokine and NET release by PMNs in vitro and in vivo. Transfer of NETs to naive human PMNs prompts additional NET release, promoting further inflammation. Our study thus uncovers a self-propagating vicious cycle contributing to chronic inflammation in psoriasis, and NET-associated RNA (naRNA) as a physiologically relevant NET component.


2012 ◽  
Vol 303 (1) ◽  
pp. H96-H105 ◽  
Author(s):  
Takayuki Koya ◽  
Takuro Miyazaki ◽  
Takuya Watanabe ◽  
Masayoshi Shichiri ◽  
Takashi Atsumi ◽  
...  

The bioactive peptide salusin-β is highly expressed in human atheromas; additionally, infusion of antiserum against salusin-β suppresses the development of atherosclerosis in atherogenic mice. This study examined the roles of salusin-β in vascular inflammation during atherogenesis. Infusion of antiserum against salusin-β attenuated the induction of VCAM-1, monocyte chemoattractant protein (MCP)-1, and IL-1β and as well as nuclear translocation of NF-κB in aortic endothelial cells (ECs) of LDL receptor-deficient mice, which led to the prevention of monocyte adhesion to aortic ECs. In vitro experiments indicated that salusin-β directly enhances the expression levels of proinflammatory molecules, including VCAM-1, MCP-1, IL-1β, and NADPH oxidase 2, as well as THP-1 monocyte adhesion to cultured human umbilical vein ECs (HUVECs). Both salusin-β-induced VCAM-1 induction and monocyte/HUVEC adhesion were suppressed by pharmacological inhibitors of NF-κB, e.g., Bay 11-7682 and curcumin. Furthermore, the VCAM-1 induction was significantly prevented by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002, whereas it was accelerated by the ERK inhibitor, U-0126. Treatment of HUVECs with salusin-β, but not with salusin-α, accelerated oxidative stress and nuclear translocation of NF-κB as well as phosphorylation and degradation of IκB-α, an endogenous inhibitor of NF-κB. Thus, salusin-β enhanced monocyte adhesion to vascular ECs through NF-κB-mediated inflammatory responses in ECs, which can be modified by PI3K or ERK signals. These findings are suggestive of a novel role of salusin-β in atherogenesis.


2017 ◽  
Vol 95 (6) ◽  
pp. 697-707 ◽  
Author(s):  
In-Chul Lee ◽  
Jongdoo Kim ◽  
Jong-Sup Bae

The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Drug repositioning refers to the development of existing drugs for new indications. Dabrafenib (DAB) is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Here, we tested the possible use of DAB in the treatment of lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of DAB were determined by measuring permeability, neutrophils adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and mice. We found that DAB inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion and transendothelial migration of neutrophils to human endothelial cells. DAB also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Furthermore, DAB suppressed the production of tumor necrosis factor-α (TNF-α) or interleukin (IL)-6 and the activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with DAB resulted in reduced LPS-induced lethal endotoxemia. These results suggest that DAB possesses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document