scholarly journals Requirement of direct contact between chondrocytes and macrophages for the maturation of regenerative cartilage

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kengo Kanda ◽  
Yukiyo Asawa ◽  
Ryoko Inaki ◽  
Yuko Fujihara ◽  
Kazuto Hoshi ◽  
...  

AbstractRegenerative cartilage prepared from cultured chondrocytes is generally immature in vitro and matures after transplantation. Although many factors, including host cells and humoral factors, have been shown to affect cartilage maturation in vivo, the requirement of direct cell–cell contact between host and donor cells remains to be verified. In this study, we examined the host cells that promote cartilage maturation via cell–cell contact. Based on analysis of the transplanted chondrocytes, we examined the contribution of endothelial cells and macrophages. Using a semiclosed device that is permeable to tissue fluids while blocking host cells, we selectively transplanted chondrocytes and HUVECs or untreated/M1-polarized/M2-polarized RAW264.7 cells. As a result, untreated RAW264.7 cells induced cartilage regeneration. Furthermore, an in vitro coculture assay indicated communication between chondrocytes and RAW264.7 cells mediated by RNA, suggesting the involvement of extracellular vesicles in this process. These findings provide insights for establishing a method of in vitro cartilage regeneration.

2021 ◽  
Author(s):  
Dionysios C Watson ◽  
Defne Bayik ◽  
Sarah E Williford ◽  
Adam Lauko ◽  
Yadi Zhou ◽  
...  

While dynamic microenvironmental interactions drive tumor growth and therapeutic resistance, the underlying direct cell-cell communication mechanisms remain poorly understood. We identified horizontal mitochondrial transfer as a mechanism that enhances tumorigenesis in glioblastoma. This transfer occurs primarily from brain-resident cells, including astrocytes, and can be appreciated in vitro and in vivo through intercellular connections between GBM cells and non-malignant host cells. The acquisition of astrocyte mitochondria drives an overall enhancement of mitochondrial membrane potential and metabolic capacity, while increasing glioblastoma cell self-renewal and tumor-initiating capacity. Collectively, our findings demonstrate that mitochondrial transfer augments the tumorigenic capacity of glioblastoma cells and reveals a previously unknown cell-cell communication mechanism that drives tumor growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-wen Cheng ◽  
Li-xia Duan ◽  
Yang Yu ◽  
Pu Wang ◽  
Jia-le Feng ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) play a crucial role in cancer development and tumor resistance to therapy in prostate cancer, but the influence of MSCs on the stemness potential of PCa cells by cell–cell contact remains unclear. In this study, we investigated the effect of direct contact of PCa cells with MSCs on the stemness of PCa and its mechanisms. Methods First, the flow cytometry, colony formation, and sphere formation were performed to determine the stemness of PCaMSCs, and the expression of stemness-related molecules (Sox2, Oct4, and Nanog) was investigated by western blot analysis. Then, we used western blot and qPCR to determine the activity levels of two candidate pathways and their downstream stemness-associated pathway. Finally, we verified the role of the significantly changed pathway by assessing the key factors in this pathway via in vitro and in vivo experiments. Results We established that MSCs promoted the stemness of PCa cells by cell–cell contact. We here established that the enhanced stemness of PCaMSCs was independent of the CCL5/CCR5 pathway. We also found that PCaMSCs up-regulated the expression of Notch signaling-related genes, and inhibition of Jagged1-Notch1 signaling in PCaMSCs cells significantly inhibited MSCs-induced stemness and tumorigenesis in vitro and in vivo. Conclusions Our results reveal a novel interaction between MSCs and PCa cells in promoting tumorigenesis through activation of the Jagged1/Notch1 pathway, providing a new therapeutic target for the treatment of PCa.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Masayuki Furuya ◽  
Junichi Kikuta ◽  
Sayumi Fujimori ◽  
Shigeto Seno ◽  
Hiroki Maeda ◽  
...  
Keyword(s):  

Blood ◽  
2012 ◽  
Vol 119 (20) ◽  
pp. 4708-4718 ◽  
Author(s):  
Anja Troeger ◽  
Amy J. Johnson ◽  
Jenna Wood ◽  
William G. Blum ◽  
Leslie A. Andritsos ◽  
...  

Abstract Trafficking of B-cell chronic lymphocytic leukemia (CLL) cells to the bone marrow and interaction with supporting stromal cells mediates important survival and proliferation signals. Previous studies have demonstrated that deletion of Rhoh led to a delayed disease onset in a murine model of CLL. Here we assessed the impact of RhoH on homing, migration, and cell-contact dependent interactions of CLL cells. Rhoh−/− CLL cells exhibited reduced marrow homing and subsequent engraftment. In vitro migration toward the chemokines CXCL12 and CXCL13 and cell-cell interactions between Rhoh−/− CLL cells and the supporting microenvironment was reduced. In the absence of RhoH the distribution of phosphorylated focal adhesion kinase, a protein known to coordinate activation of the Rho GTPases RhoA and Rac, appeared less polarized in chemokine-stimulated Rhoh−/− CLL cells, and activation and localization of RhoA and Rac was dysregulated leading to defective integrin function. These findings in the Rhoh−/− CLL cells were subsequently demonstrated to closely resemble changes in GTPase activation observed in human CLL samples after in vitro and in vivo treatment with lenalidomide, an agent with known influence on microenvironment protection, and suggest that RhoH plays a critical role in prosurvival CLL cell-cell and cell-microenvironment interactions with this agent.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1571-1571
Author(s):  
Jonas Schwestermann ◽  
Andrej Besse ◽  
Lenka Besse ◽  
Christoph Driessen

Abstract Background Multiple myeloma (MM) remains an incurable malignancy, with most patients relapsing and dying from the disease. Anti-myeloma drugs, such as proteasome inhibitors (PIs) bortezomib and carfilzomib (CFZ), have considerably improved prognosis in myeloma. Despite these advances, disease heterogeneity, early relapse and treatment resistance still pose major challenges in MM treatment. Understanding the mechanisms that mediate PI resistance provide a key to targeting both, PI-resistant minimal residual disease that drives relapsed MM after prolonged PI-containing frontline therapy, as well as PI-refractory, aggressive advanced MM. While key mechanisms of the in vitro-generated PI resistance in MM have been revealed in cell line models, we lack understanding of PI resistance in vivo, where in particular clonal heterogeneity and the tumor microenvironment (TME) within the bone marrow (BM) add additional levels of complexity. Therefore, the aim of our study was to analyze the molecular landscape and changes occurring during MM progression under CFZ treatment in vivo and to identify key molecular processes contributing to CFZ-resistance of MM cells in the presence of stromal cells in vitro, to ultimately identify new molecular pathways and develop innovative treatment strategies in PI-resistant MM. Methods The NSG mice intrafemorally engrafted with human RPMI-8226 cells were either untreated or treated long-term with 4 mg/kg CFZ (intravenously) until they became drug resistant. At this point, CFZ naïve and CFZ-resistant cells were isolated and processed for single-cell RNA sequencing (scRNA-seq, 10x Genomics) with the aim to characterize a transcriptional CFZ-resistance signature in refractory cells. To investigate the role of the TME as well as the importance of cell-cell interactions in CFZ-resistance in vitro, we performed two independent genome-wide CRISPR/Cas9 library screenings. In the first one, Brunello library transduced RPMI-8226 cells were co-cultured with human stromal cells (HS5) and treated with CFZ to identify CFZ sensitivity/resistance candidate genes. In the second experiment, Brunello library and synthetic Notch (synNotch) receptor transduced HS5 cells were co-cultured with synNotch ligand transduced RPMI-8226 cells to identify genes that are essential for establishing cell-cell contacts between stromal and MM cells. Subsequent functional analysis of the highest-ranking CFZ sensitivity/resistance candidates in the RPMI-8226+HS5 co-culture included shRNA-silencing, single-gene knockouts, viability assays, cell cycle analysis and protein synthesis analysis using the SUnSET assay. Results ScRNA-seq analysis of CFZ-refractory RPMI-8226 cells growing in the BM of NSG mice showed a different transcriptional landscape, compared to CFZ-naïve cells isolated from the BM of untreated mice. The unsupervised clustering analysis, using UMAP, revealed that cells exposed to CFZ show distinct populations with a strong increase in the OXPHOS and protein folding capacity as well as down-regulation of several genes involved in proliferation and apoptosis, when compared to naïve cells. The CRISPR/Cas9 library screening where RPMI-8226 cells were co-cultured with HS5 cells and exposed to CFZ revealed several CFZ sensitivity candidates at the cut-off of false discovery rate (FDR) < 0.01 and fold change above 1.5-fold. Those genes are involved in cytokine signaling, cell growth, invasion, metastasis and quality control of translational elongation. At the same time, the CRISPR/Cas9 library screening, where synNotch receptor transduced HS5 cells were co-cultured with synNotch ligand transduced RPMI-8226 cells revealed gene candidates at the cut-off of FDR < 0.01 and fold change greater than 1.5-fold, which mediate stronger or weaker cell-cell interaction. Those genes are particularly involved in cytokine signaling and mitochondrial metabolism. Conclusion In conclusion, MM cells that acquired CFZ-resistance upon cell-cell contact with certain cell types within the TME, such as stromal cells, differ significantly from CFZ-naïve cells. CFZ-resistance, caused by cell-cell contact with stromal cells, is presumably mediated via decreased proliferative as well as protein synthesis capacity of MM cells. Therefore, stimulation of MM cells to proliferate and synthesize more proteins may be a key to targeting CFZ-resistance in vivo. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 205 (5) ◽  
pp. 1213-1225 ◽  
Author(s):  
Erwan Mortier ◽  
Tammy Woo ◽  
Rommel Advincula ◽  
Sara Gozalo ◽  
Averil Ma

Natural killer (NK) cells are innate immune effectors that mediate rapid responses to viral antigens. Interleukin (IL)-15 and its high affinity IL-15 receptor, IL-15Rα, support NK cell homeostasis in resting animals via a novel trans presentation mechanism. To better understand how IL-15 and IL-15Rα support NK cell activation during immune responses, we have used sensitive assays for detecting native IL-15 and IL-15Rα proteins and developed an assay for detecting complexes of these proteins. We find that IL-15 and IL-15Rα are preassembled in complexes within the endoplasmic reticulum/Golgi of stimulated dendritic cells (DCs) before being released from cells. IL-15Rα is required for IL-15 production by DCs, and IL-15 that emerges onto the cell surface of matured DCs does not bind to neighboring cells expressing IL-15Rα. We also find that soluble IL-15–IL-15Rα complexes are induced during inflammation, but membrane-bound IL-15–IL-15Rα complexes, rather than soluble complexes, support NK cell activation in vitro and in vivo. Finally, we provide in vivo evidence that expression of IL-15Rα specifically on DCs is critical for trans presenting IL-15 and activating NK cells. These studies define an unprecedented cytokine–receptor biosynthetic pathway in which IL-15Rα serves as a chaperone for IL-15, after which membrane-bound IL-15Rα–IL-15 complexes activate NK cells via direct cell–cell contact.


2017 ◽  
Vol 114 (10) ◽  
pp. E1951-E1957 ◽  
Author(s):  
Allison M. Jones ◽  
Fernando Garza-Sánchez ◽  
Jaime So ◽  
Christopher S. Hayes ◽  
David A. Low

Contact-dependent growth inhibition (CDI) is a mechanism by which bacteria exchange toxins via direct cell-to-cell contact. CDI systems are distributed widely among Gram-negative pathogens and are thought to mediate interstrain competition. Here, we describetsfmutations that alter the coiled-coil domain of elongation factor Ts (EF-Ts) and confer resistance to the CdiA-CTEC869tRNase toxin from enterohemorrhagicEscherichia coliEC869. Although EF-Ts is required for toxicity in vivo, our results indicate that it is dispensable for tRNase activity in vitro. We find that CdiA-CTEC869binds to elongation factor Tu (EF-Tu) with high affinity and this interaction is critical for nuclease activity. Moreover, in vitro tRNase activity is GTP-dependent, suggesting that CdiA-CTEC869only cleaves tRNA in the context of translationally active GTP·EF-Tu·tRNA ternary complexes. We propose that EF-Ts promotes the formation of GTP·EF-Tu·tRNA ternary complexes, thereby accelerating substrate turnover for rapid depletion of target-cell tRNA.


2015 ◽  
Vol 112 (13) ◽  
pp. E1594-E1603 ◽  
Author(s):  
Ruijun Tian ◽  
Haopeng Wang ◽  
Gerald D. Gish ◽  
Evangelia Petsalaki ◽  
Adrian Pasculescu ◽  
...  

Systematic characterization of intercellular signaling approximating the physiological conditions of stimulation that involve direct cell–cell contact is challenging. We describe a proteomic strategy to analyze physiological signaling mediated by the T-cell costimulatory receptor CD28. We identified signaling pathways activated by CD28 during direct cell–cell contact by global analysis of protein phosphorylation. To define immediate CD28 targets, we used phosphorylated forms of the CD28 cytoplasmic region to obtain the CD28 interactome. The interaction profiles of selected CD28-interacting proteins were further characterized in vivo for amplifying the CD28 interactome. The combination of the global phosphorylation and interactome analyses revealed broad regulation of CD28 and its interactome by phosphorylation. Among the cellular phosphoproteins influenced by CD28 signaling, CapZ-interacting protein (CapZIP), a regulator of the actin cytoskeleton, was implicated by functional studies. The combinatorial approach applied herein is widely applicable for characterizing signaling networks associated with membrane receptors with short cytoplasmic tails.


1994 ◽  
Vol 125 (2) ◽  
pp. 313-320 ◽  
Author(s):  
T Crepaldi ◽  
A L Pollack ◽  
M Prat ◽  
A Zborek ◽  
K Mostov ◽  
...  

Scatter Factor, also known as Hepatocyte Growth Factor (SF/HGF), has pleiotropic functions including direct control of cell-cell and cell-substrate adhesion in epithelia. The subcellular localization of the SF/HGF receptor is controversial. In this work, the cell surface distribution of the SF/HGF receptor was studied in vivo in epithelial tissues and in vitro in polarized MDCK monolayers. A panel of monoclonal antibodies against the beta chain of the SF/HGF receptor stained the basolateral but not the apical surface of epithelia lining the lumen of human organs. Radiolabeled or fluorescent-tagged anti-receptor antibodies selectively bound the basolateral cell surface of MDCK cells, which form a polarized monolayer sealed by intercellular junctions, when grown on polycarbonate filters in a two-chamber culture system. The receptor was concentrated around the cell-cell contact zone, showing a distribution pattern overlapping with that of the cell adhesion molecule E-cadherin. The basolateral localization of the SF/HGF receptor was confirmed by immunoprecipitation after domain selective cell surface biotinylation. When cells were fully polarized the SF/HGF receptor became resistant to non-ionic detergents, indicating interaction with insoluble component(s). In pulse-chase labeling and surface biotinylation experiments, the newly synthesized receptor was found exclusively at the basolateral surface. We conclude that the SF/HGF receptor is selectively exposed at the basolateral plasma membrane domain of polarized epithelial cells and is targeted after synthesis to that surface by direct delivery from the trans-Golgi network.


Sign in / Sign up

Export Citation Format

Share Document