scholarly journals 3-D vascularized breast cancer model to study the role of osteoblast in formation of a pre-metastatic niche

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rahul Rimal ◽  
Prachi Desai ◽  
Andrea Bonnin Marquez ◽  
Karina Sieg ◽  
Yvonne Marquardt ◽  
...  

AbstractBreast cancer cells (BCCs) preferentially metastasize to bone. It is known that BCCs remotely primes the distant bone site prior to metastasis. However, the reciprocal influence of bone cells on the primary tumor is relatively overlooked. Here, to study the bone-tumor paracrine influence, a tri-cellular 3-D vascularized breast cancer tissue (VBCTs) model is engineered which comprised MDA-MB231, a triple-negative breast cancer cells (TNBC), fibroblasts, and endothelial cells. This is indirectly co-cultured with osteoblasts (OBs), thereby constituting a complex quad-cellular tumor progression model. VBCTs alone and in conjunction with OBs led to abnormal vasculature and reduced vessel density but enhanced VEGF production. A total of 1476 significantly upregulated and 775 downregulated genes are identified in the VBCTs exposed to OBs. HSP90N, CYCS, RPS27A, and EGFR are recognized as upregulated hub-genes. Kaplan Meier plot shows HSP90N to have a significant outcome in TNBC patient survivability. Furthermore, compared to cancer tissues without vessels, gene analysis recognized 1278 significantly upregulated and 566 downregulated genes in VBCTs. DKK1, CXCL13, C3 protein and BMP4 are identified to be downregulated hub genes in VBCTs. Together, a multi-cellular breast cancer model and culture protocols are established to study pre-metastatic events in the presence of OBs.

2021 ◽  
Author(s):  
Duo You ◽  
Danfeng Du ◽  
Xueke Zhao ◽  
Xinmin Li ◽  
Minfeng Ying ◽  
...  

Abstract Background: α-ketoglutarate (α-KG) is the substrate to hydoxylate collagen and hypoxia-inducible factor-1α (HIF-1α), which are important for cancer metastasis. Previous studies showed that upregulation of collagen prolyl 4-hydroxylase in breast cancer cells stabilizes HIF-1α via depleting α-KG in breast cancer cells. We propose that mitochondrial malate enzyme 2 (ME2) may also affect HIF-1α via modulating α-KG level in breast cancer cells. Methods: ME2 protein expression was evaluated by immunohistochemistry on 100 breast cancer patients and correlated with clinicopathological indicators. The effect of ME2 knockout on cancer metastasis was evaluated by an orthotopic breast cancer model. The effect of ME2 knockout or knockdown on the levels of α-KG and HIF-1α protein in breast cancer cell lines (4T1 and MDA-MB-231) was determined in vitro and in vivo.Results: The high expression of ME2 was observed in the human breast cancerous tissues compared to the matched precancerous tissues (P=0.000). The breast cancer patients with a high expression of ME2 had an inferior survival than the patients with low expression of ME2 (P=0.019). ME2 high expression in breast cancer tissues was also related with lymph node metastasis (P=0.016), pathological staging (P=0.033) and vascular cancer embolus (P=0.014). In a 4T1 orthotopic breast cancer model, ME2 knockout significantly inhibited lung metastasis. In the tumors formed by ME2 knockout 4T1 cells, α-KG level significantly increased, collagen hydroxylation level did not change significantly, but HIF-1α protein level significantly decreased, in comparison to control. In cell culture, ME2 knockout or knockdown cells demonstrated a significantly higher α-KG level but significantly lower HIF-1α protein level than control cells under hypoxia. Exogenous malate and α-KG exerted similar effect on HIF-1α in breast cancer cells to ME2 knockout or knockdown. Treatment with malate significantly decreased 4T1 breast cancer lung metastasis. ME2 expression was associated with HIF-1α level in human breast cancer samples (P=0.027).Conclusion: We provide evidence that upregulation of ME2 is associated with a poor prognosis of breast cancer patients and propose a mechanistic understanding of a link between ME2 and breast cancer metastasis.


2015 ◽  
Vol 35 (2) ◽  
Author(s):  
Natalia Volinsky ◽  
Cormac J. McCarthy ◽  
Alex von Kriegsheim ◽  
Nina Saban ◽  
Mariko Okada-Hatakeyama ◽  
...  

Excessive production and accumulation of lipids is often observed in breast cancer tissue. In the current study, we investigate signalling mechanisms regulating this process using a model cell line.


2019 ◽  
Author(s):  
Xi Qiao ◽  
Ying Liu ◽  
Maria Llamazares Prada ◽  
Abhishekh Gupta ◽  
Alok Jaiswal ◽  
...  

AbstractMYC protein expression has to be tightly controlled to allow for maximal cell proliferation without inducing apoptosis. Here we discover UBR5 as a novel MYC ubiquitin ligase and demonstrate how it functions as a molecular rheostat to prevent excess accumulation of MYC protein. UBR5 effects on MYC protein stability are independent on N-terminal FBW7 degron of MYC. Endogenous UBR5 inhibition induces MYC protein expression and activates MYC target genes. Moreover, UBR5 governs MYC-dependent phenotypes in vivo in Drosophila. In cancer cells, UBR5-mediated MYC protein suppression diminishes cell killing activity of cancer therapeutics. Further, we demonstrate that UBR5 dominates MYC protein expression at the single-cell level in human basal-type breast cancer tissue. Myc and Ubr5 are co-amplified in MYC-driven human cancer types, and UBR5 controls MYC-mediated apoptotic threshold in co-amplified basal type breast cancer cells. In summary, UBR5 is a novel MYC ubiquitin ligase and an endogenous rheostat for MYC protein expression in vivo. Clinically, expression of UBR5 may be important for protection of breast cancer cells from drug-induced, and MYC-dependent, apoptosis.


2011 ◽  
Vol 4 (1) ◽  
pp. 8-14
Author(s):  
E. Lopez-Munoz ◽  
N. Garcia-Hernandez ◽  
R. I. Penaloza-Espinosa ◽  
M. E. Gomez-Del Toro ◽  
G. Zarco-Espinosa ◽  
...  

The detection of circulating breast cancer cells in blood could be of special interest as an indicator of diagnosis and prognosis, and for the selection of treatment. In a previous report, our research group determined gene expression profiles in samples of breast cancer tissue, identifying over-expression of the BIK/NBK mRNA gene in 90% of the analyzed samples. In this paper, we analyze the BIK/NBK gene expression as a possible biomarker of circulating breast cancer cells in blood. We demonstrate that the BIK/NBK gene expression is not a significant biomarker in the detection of circulating breast cancer cells in the blood of women with breast cancer. Several studies have evaluated the regulation of apoptosis by estrogens in breast cancer cells, demonstrating the importance of BIK/NBK protein, in estrogen-regulated breast cancer cell apoptosis, which suggests that the regulation of its expression may be an important therapeutic target or strategy in the management of cancer, and, although we did not find statistically significant differences among the patient groups to demonstrate that BIK/NBK gene expression is a biomarker of circulating breast cancer cells in blood, we consider it necessary to continue the study of this gene in breast cancer tissue and its role in the development and progression of breast cancer, its prognostic value, and its potential use as therapeutic target.


Author(s):  
Gehao Liang ◽  
Yun Ling ◽  
Qun Lin ◽  
Yu Shi ◽  
Qing Luo ◽  
...  

ObjectivesCircular RNA (circRNA) is a novel class of RNA, which exhibits powerful biological function in regulating cellular fate of various tumors. Previously, we had demonstrated that over-expression of circRNA circCDYL promoted progression of HER2-negative (HER2–) breast cancer via miR-1275-ULK1/ATG7-autophagic axis. However, the role of circCDYL in HER2-positive (HER2+) breast cancer, in particular its role in modulating cell proliferation, one of the most important characteristics of cellular fate, is unclear.Materials and methodsqRT-PCR and in situ hybridization analyses were performed to examine the expression of circCDYL and miR-92b-3p in breast cancer tissues or cell lines. The biological function of circCDYL and miR-92b-3p were assessed by plate colony formation and cell viability assays and orthotopic animal models. In mechanistic study, circRNAs pull-down, RNA immunoprecipitation, dual luciferase report, western blot, immunohistochemical and immunofluorescence staining assays were performed.ResultsCircCDYL was high-expressed in HER2+ breast cancer tissue, similar with that in HER2– breast cancer tissue. Silencing HER2 gene had no effect on expression of circCDYL in HER2+ breast cancer cells. Over-expression of circCDYL promoted proliferation of HER2+ breast cancer cells but not through miR-1275-ULK1/ATG7-autophagic axis. CircRNA pull down and miRNA deep-sequencing demonstrated the binding of miR-92b-3p and circCDYL. Interestingly, circCDYL did not act as miR-92b-3p sponge, but was degraded in miR-92b-3p-dependent silencing manner. Clinically, expression of circCDYL and miR-92b-3p was associated with clinical outcome of HER2+ breast cancer patients.ConclusionMiR-92b-3p-dependent cleavage of circCDYL was an essential mechanism in regulating cell proliferation of HER2+ breast cancer cells. CircCDYL was proved to be a potential therapeutic target for HER2+ breast cancer, and both circCDYL and miR-92b-3p might be potential biomarkers in predicting clinical outcome of HER2+ breast cancer patients.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Therina Du Toit ◽  
Amanda C Swart

Abstract The metabolism of 11β-hydroxyandrostenedione (11OHA4), a major adrenal C19 steroid, was first characterised in our in vitro prostate models showing that 11OHA4, catalysed by 11βHSDs, 17βHSDs and 5α-reductases, yields potent androgens, 11keto-testosterone (11KT) and 11keto-dihydrotestosterone (11KDHT) in the 11OHA4-pathway [1]. Findings have since led to the analysis of C11-oxy steroids in PCOS, CAH and 21OHD. However, the only circulating C11-oxy steroids included to date have been 11OHA4, 11keto-androstenedione (11KA4), 11β-hydroxytestosterone (11OHT) and 11KT, with 11KT reported as the only potent androgen produced from 11OHA4. We have identified higher levels of 11KDHT compared to 11KT in prostate cancer tissue and benign prostatic hyperplasia tissue and serum, with data suggesting impeded glucuronidation of the C11-oxy androgens [2,3]. The assessment of 11KDHT and the inactivation/conjugation of the C11-oxy steroids in clinical conditions is therefore crucial. We investigated the metabolism of testosterone, 11KT, 11OHT, dihydrotestosterone, 11KDHT and 11OHDHT in JEG-3 placenta choriocarcinoma, MCF-7 BUS and T-47D breast cancer cells, focusing on glucuronidation and sulfation. Steroids were assayed at 1 µM and metabolites were quantified using UPC2-MS/MS. Conjugated steroids were not detected in JEG-3 cells with DHT (0.6 µM remaining) metabolised to 5α-androstane-3α,17β-diol and androsterone (AST), and 11KDHT (0.9 µM remaining) to 11OHAST and 11KAST. 11OHA4 was converted to 11KA4 (12%) and 11KT (2.5%); and 11KT to 11KDHT (14%). In MCF-7 BUS cells, DHT was significantly glucuronidated, whereas 11KDHT was not. 11KAST was the only steroid in the MCF-7 BUS and T-47D cells that was significantly sulfated (p<0.05). In parallel we investigated sulfation in the LNCaP prostate model. Comparing sulfated to glucuronidated levels, only DHT was sulfated, 26%. Analysis showed that C19 steroids were significantly conjugated (glucuronidated + sulfated) compared to the C11-oxy C19 steroids. As there exists an intricate interplay between steroid production and inactivation, impacting pre- and post-receptor activation, efficient conjugation would limit adverse downstream effects. Our data demonstrates the production and impeded conjugation of active C11-oxy C19 steroids, allowing the prolonged presence of androgenic steroids in the cellular microenvironment. Identified for the first time is the 11OHA4-pathway in placenta and breast cancer cells, and the sulfation of 11KAST. Characterising steroidogenic pathways in in vitro models paves the direction for in vivo studies associated with characterising clinical disorders and disease, which the C11-oxy C19 steroids and their intermediates, including inactivated and conjugated end-products, have highlighted. [1] Bloem, et al. JSBMB 2015, 153; [2] Du Toit & Swart. MCE 2018, 461; [3] Du Toit & Swart, JSBMB 2020, 105497.


2021 ◽  
Vol 11 (12) ◽  
pp. 2472-2477
Author(s):  
Chunxiong Fan ◽  
Yanping Deng ◽  
Yaqing Liu ◽  
Xiaoying Liu ◽  
Xi Ke ◽  
...  

Our study assessed miR-556-3p’s role in breast cancer cells. A total of 65 cases of breast cancer tissue samples were retrospectively analyzed to detect miR-556-3p level by PCR and analyze survival time and 30 normal breast tissues were included as a control group. Breast cancer cells were cultured followed by analysis of cell proliferation by MTT, cell invasion by transwell assay. miR-556-3p level was significantly upregulated in breast cancer patients compared to control group (P <0.05) and inversely associated with survival rate (P <0.05). In vitro experiments, cell activity and invasion were positively correlated with miR-556-3p level (P <0.05). In MCF-7 cell lines, miR-556-3p overexpression increased cell activity (P <0.05). Meanwhile, after miR-556-3p was overexpressed, the expression of DAB2IP, Erk, p-Erk in breast cancer cells was significantly reduced and increased after miR-556-3p was knocked down. In conclusion, miR-556-3p targets DAB2IP3′-UTR, promotes breast cancer cell proliferation, indicating that miR-556-3p might be involved in breast cancer pathogenesis and may be a new target for the treatment.


Sign in / Sign up

Export Citation Format

Share Document