scholarly journals Signalling mechanisms regulating phenotypic changes in breast cancer cells

2015 ◽  
Vol 35 (2) ◽  
Author(s):  
Natalia Volinsky ◽  
Cormac J. McCarthy ◽  
Alex von Kriegsheim ◽  
Nina Saban ◽  
Mariko Okada-Hatakeyama ◽  
...  

Excessive production and accumulation of lipids is often observed in breast cancer tissue. In the current study, we investigate signalling mechanisms regulating this process using a model cell line.

2011 ◽  
Vol 4 (1) ◽  
pp. 8-14
Author(s):  
E. Lopez-Munoz ◽  
N. Garcia-Hernandez ◽  
R. I. Penaloza-Espinosa ◽  
M. E. Gomez-Del Toro ◽  
G. Zarco-Espinosa ◽  
...  

The detection of circulating breast cancer cells in blood could be of special interest as an indicator of diagnosis and prognosis, and for the selection of treatment. In a previous report, our research group determined gene expression profiles in samples of breast cancer tissue, identifying over-expression of the BIK/NBK mRNA gene in 90% of the analyzed samples. In this paper, we analyze the BIK/NBK gene expression as a possible biomarker of circulating breast cancer cells in blood. We demonstrate that the BIK/NBK gene expression is not a significant biomarker in the detection of circulating breast cancer cells in the blood of women with breast cancer. Several studies have evaluated the regulation of apoptosis by estrogens in breast cancer cells, demonstrating the importance of BIK/NBK protein, in estrogen-regulated breast cancer cell apoptosis, which suggests that the regulation of its expression may be an important therapeutic target or strategy in the management of cancer, and, although we did not find statistically significant differences among the patient groups to demonstrate that BIK/NBK gene expression is a biomarker of circulating breast cancer cells in blood, we consider it necessary to continue the study of this gene in breast cancer tissue and its role in the development and progression of breast cancer, its prognostic value, and its potential use as therapeutic target.


Author(s):  
Gehao Liang ◽  
Yun Ling ◽  
Qun Lin ◽  
Yu Shi ◽  
Qing Luo ◽  
...  

ObjectivesCircular RNA (circRNA) is a novel class of RNA, which exhibits powerful biological function in regulating cellular fate of various tumors. Previously, we had demonstrated that over-expression of circRNA circCDYL promoted progression of HER2-negative (HER2–) breast cancer via miR-1275-ULK1/ATG7-autophagic axis. However, the role of circCDYL in HER2-positive (HER2+) breast cancer, in particular its role in modulating cell proliferation, one of the most important characteristics of cellular fate, is unclear.Materials and methodsqRT-PCR and in situ hybridization analyses were performed to examine the expression of circCDYL and miR-92b-3p in breast cancer tissues or cell lines. The biological function of circCDYL and miR-92b-3p were assessed by plate colony formation and cell viability assays and orthotopic animal models. In mechanistic study, circRNAs pull-down, RNA immunoprecipitation, dual luciferase report, western blot, immunohistochemical and immunofluorescence staining assays were performed.ResultsCircCDYL was high-expressed in HER2+ breast cancer tissue, similar with that in HER2– breast cancer tissue. Silencing HER2 gene had no effect on expression of circCDYL in HER2+ breast cancer cells. Over-expression of circCDYL promoted proliferation of HER2+ breast cancer cells but not through miR-1275-ULK1/ATG7-autophagic axis. CircRNA pull down and miRNA deep-sequencing demonstrated the binding of miR-92b-3p and circCDYL. Interestingly, circCDYL did not act as miR-92b-3p sponge, but was degraded in miR-92b-3p-dependent silencing manner. Clinically, expression of circCDYL and miR-92b-3p was associated with clinical outcome of HER2+ breast cancer patients.ConclusionMiR-92b-3p-dependent cleavage of circCDYL was an essential mechanism in regulating cell proliferation of HER2+ breast cancer cells. CircCDYL was proved to be a potential therapeutic target for HER2+ breast cancer, and both circCDYL and miR-92b-3p might be potential biomarkers in predicting clinical outcome of HER2+ breast cancer patients.


2021 ◽  
Author(s):  
Shiping Li ◽  
Xiaoyi Mi ◽  
Mingfang Sun ◽  
Jie Zhang ◽  
Miaomiao Hao ◽  
...  

Abstract Background: Recently, an increasing number of studies have focused on investigating long non-coding RNAs (lncRNAs) and their role in regulating the progression of various cancer types. However, the biological effects and underlying mechanisms of EGFR-AS1, a typical lncRNA, remain largely unclear in breast cancer.Methods: Differential expression of EGFR-AS1 in breast cancer tissue was analyzed using an integrative database and verified in breast cancer tissue samples and cells via real-time PCR analysis and western blotting analysis. The tumor promoter role of EGFR-AS1 in breast cancer cells was determined through MTT, EDU analysis, colony formation and transwell assays,and the effect of EGFR-AS1 on docetaxel drug sensitivity was examined. We then performed bioinformatic analysis and the dual-luciferase reporter assay to identify the binding sites of EGFR-AS1/miR-149-5p and miR-149-5p/ELP5. Results from western blotting and biological function studies provided insights into whether the EGFR-AS1/miR-149-5p/ELP5 axis regulates breast cancer development in vitro and in vivo. Results: EGFR-AS1 is upregulated in breast cancer tissues and cells and promotes the progression of breast cancer cells both in vitro and in vivo. Moreover, miR-149-5p is downregulated in breast cancer tissues and cell lines. Mechanistically, EGFR-AS1 regulates ELP5 levels by sponging miR-149-5p, thereby affecting cell progression and promoting epithelial-to-mesenchymal transition. Hence, the EGFR-AS1/miR-149-5p/ELP5 axis is involved in breast cancer proliferation, migration, invasion, and resistance to the chemotherapeutic drug, docetaxel, in breast cancer cells. Conclusions: EGFR-AS1 sponges miR-149-5p to affect the expression level of ELP5 ultimately acting as a new tumor promotor in breast cancer. This study provides novel insights into diagnostic and docetaxel-related chemotherapy targets for breast cancer.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2090-2090
Author(s):  
Elizabeth Mittendorf ◽  
Gheath Alatrash ◽  
Na Qiao ◽  
Pariya Sukhumalchandra ◽  
Sijie Lu ◽  
...  

Abstract Abstract 2090 We have shown that cytotoxic T lymphocytes (CTL) with specificity for the cyclin E (CCNE) derived HLA-A2-restricted peptide CCNE144-152 (ILLDWLMEV) specifically lyse myeloid and lymphoid leukemia in proportion to CCNE overexpression. Full length (FL) CCNE is also overexpressed in most solid tumors, including breast cancer where it is a poor prognostic factor. In addition, leukemia and many breast cancers express tumor-specific low molecular weight (LMW) isoforms of CCNE that result from post-translational processing of the FL protein. Neutrophil elastase (NE), derived from the primary granules of neutrophils, cleaves FL CCNE into LMW forms and NE has been identified in breast cancer tissue. Therefore, we hypothesized that CCNE may also be a breast cancer tumor antigen because the CCNE144-152 peptide is contained within the overexpressed FL and LMW forms, and that effective T cell immunity could be amplified by increased availability of LMW forms within tumor cells exposed to NE. The link between innate immunity, inflammation, and tumor immunity is poorly understood, and this mechanism could explain a role for tumor-infiltrating inflammatory cells in breast cancer. To test this, we elicited CCNE-CTL from peripheral blood lymphocytes of HLA-A2+ healthy donors by weekly stimulation with CCNE-pulsed T2 cells and low-dose IL-2. After 21 days, cytotoxicity of target cells by the lymphocytes was tested with a standard 4-hour calcein AM-based assay. The CCNE-CTL specifically lysed T2 cells pulsed with CCNE (30%) but not non-pulsed T2 cells (0%) at an effector:target (E:T) ratio of 20:1 (p < 0.01). Next, we tested whether CCNE-CTL killed HLA-A2+ MDA-MB-231 (231) breast cancer cells. First, we confirmed that FL CCNE and LMW forms were expressed in 231 cells, while low expression of FL CCNE and no expression of the LMW forms was observed in benign epithelial cells by Western blot. Next, we showed that CCNE-CTL mediated 49% lysis of 231 breast cancer cells at an E:T ratio of 20:1. To look for in vivo evidence of CCNE recognition, we studied peripheral blood lymphocytes from breast cancer patients by flow cytometry with CCNE/HLA-A2 tetramers and anti-CD8 antibodies. In 3 of 4 breast cancer patients we identified CCNE-CTL, with no detectable CCNE-CTL in healthy controls. Together, these results confirm that CCNE is also a tumor antigen in breast cancer. NE, which cleaves CCNE and is expressed in breast cancer tissue, may be produced endogenously by breast cancer cells, or exogenously by inflammatory cells in the tumor microenvironment. Therefore, we studied 231 cells and three other breast cancer cell lines (MDA-MB-453, MCF-7, and HER18) for NE expression. RT-PCR performed with NE-specific primers showed that none of the cells expressed NE mRNA and Western blot showed no NE protein expression, suggesting that NE in tumor tissue derives from neutrophils or other inflammatory cells. To determine whether NE is taken up by breast cancer cells, we used flow cytometry to show that 231 cells pulsed with soluble NE took up an increasing amount of NE and was maximal by 24 hours when intracellular NE expression in 231 cells was comparable to that of HL60 leukemia cells that express high levels of NE. In addition, LMW isoforms of CCNE were increased in NE-pulsed 231 cells, by Western blot. Importantly, CCNE-CTL specific lysis of NE-pulsed 231 cells was 2-fold higher compared to nonpulsed 231 (46% versus 22% at E:T 10:1, p = 0.01). Taken together, these data show that overexpressed CCNE144-152 is a novel breast cancer peptide antigen. Furthermore, exogenous NE is taken up by breast cancer cells, increasing LMW forms of CCNE and enhancing the susceptibility of breast cancer cells to CCNE-CTL-mediated cytolysis. This study links a specific enzyme secreted by neutrophils in the innate immune response to tumors to a specific adaptive immune response against breast cancer, and it suggests that immunotherapy targeting CCNE is warranted. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 80 (2) ◽  
pp. 845-853 ◽  
Author(s):  
Hratch Arbach ◽  
Viktor Viglasky ◽  
Florence Lefeu ◽  
Jean-Marc Guinebretière ◽  
Vanessa Ramirez ◽  
...  

ABSTRACT The Epstein-Barr virus (EBV) has been detected in subsets of breast cancers. In order to elaborate on these observations, we quantified by real-time PCR (Q-PCR) the EBV genome in biopsy specimens of breast cancer tissue as well as in tumor cells isolated by microdissection. Our findings show that EBV genomes can be detected by Q-PCR in about half of tumor specimens, usually in low copy numbers. However, we also found that the viral load is highly variable from tumor to tumor. Moreover, EBV genomes are heterogeneously distributed in morphologically identical tumor cells, with some clusters of isolated tumor cells containing relatively high genome numbers while other tumor cells isolated from the same specimen may be negative for EBV DNA. Using reverse transcription-PCR, we detected EBV gene transcripts: EBNA-1 in almost all of the EBV-positive tumors and RNA of the EBV oncoprotein LMP-1 in a smaller subset of the tissues analyzed. Moreover, BARF-1 RNA was detected in half of the cases studied. Furthermore, we observed that in vitro EBV infection of breast carcinoma cells confers resistance to paclitaxel (taxol) and provokes overexpression of a multidrug resistance gene (MDR1). Consequently, even if a small number of breast cancer cells are EBV infected, the impact of EBV infection on the efficiency of anticancer treatment might be of importance.


1999 ◽  
pp. 149-156 ◽  
Author(s):  
S Chen ◽  
D Zhou ◽  
T Okubo ◽  
Y C Kao ◽  
C Yang

Aromatase has been shown to be expressed at a higher level in human breast cancer tissue than in normal breast tissue, by means of enzyme activity measurement, immunocytochemistry, and RT-PCR analysis. Cell culture including MCF-7 breast cancer cells, animal experiments using aromatase-transfected breast cancer cells, and transgenic mouse studies have demonstrated that estrogen production in situ plays a more important role than circulating estrogens in breast tumor promotion. In addition, tumor aromatase is believed to be able to stimulate breast cancer growth through both autocrine and paracrine pathways, as demonstrated by a three-dimensional cell culture study. RT-PCR and gene transcriptional studies have revealed that the aromatase promoter is switched from a glucocorticoid-stimulated promoter, I.4, in normal tissue to cAMP-stimulated promoters, I.3 and II, in cancerous tissue. Recently, we identified and characterized a cAMP-responsive element (CREaro) upstream from promoter I.3 by DNA deletion and mutational analyses. Our results from promoter functional analysis also demonstrated an interaction between the CREaro and the silencer element (S1) that was identified previously in our laboratory. In the presence of cAMP, the positive regulatory CREaro can overcome the action of the silencer on the function of promoter I.3. On the basis of results generated from our own and other laboratories, we propose that, in normal breast adipose stromal cells and fibroblasts, aromatase expression is driven by promoter I.4 (glucocorticoid dependent), and that the action of promoters I.3 and II is suppressed by the silencer negative regulatory element. However, in cancer cells and surrounding adipose stromal cells, the cAMP level increases, and aromatase promoters are switched to cAMP-dependent promoters - I.3 and II. Furthermore, we applied the yeast one-hybrid screening method to search for proteins interacting with the silencer element, S1. The major protein identified was ERRalpha-1; however, SF-1, which is present in the ovary, is not detected in breast cancer tissue. Using a reporter plasmid with the aromatase genomic fragment containing promoter I.3 and S1, in breast cancer SK-BR-3 cells, ERRalpha-1 was found to have a positive regulatory function. It is believed that the silencer element in the human aromatase gene may function differently in different tissues, as a result of distinct expression patterns of transcription factors.


2015 ◽  
Vol 10 (1) ◽  
pp. 154-158 ◽  
Author(s):  
LIN GAN ◽  
GUOQING ZUO ◽  
TING WANG ◽  
JIE MIN ◽  
YADONG WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document