scholarly journals A newly discovered behavior (‘tail-belting’) among wild rodents in sub zero conditions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafal Stryjek ◽  
Michael H. Parsons ◽  
Piotr Bebas

AbstractRodents are among the most successful mammals because they have the ability to adapt to a broad range of environmental conditions. Here, we present the first record of a previously unknown thermal adaptation to cold stress that repeatedly occurred in two species of non-commensal rodents (Apodemus flavicollis and Apodemus agrarius). The classic rodent literature implies that rodents prevent heat loss via a broad range of behavioral adaptations including sheltering, sitting on their tails, curling into a ball, or huddling with conspecifics. Here, we have repeatedly observed an undescribed behavior which we refer to as “tail-belting”. This behavior was performed under cold stress, whereby animals lift and curl the tail medially, before resting it on the dorsal, medial rump while feeding or resting. We documented 115 instances of the tail-belting behavior; 38 in Apodemus agrarius, and 77 in Apodemus flavicollis. Thermal imaging data show the tails remained near ambient temperature even when temperatures were below 0 °C. Since the tail-belting occurred only when the temperature dropped below − 6.9 °C (for A. flavicollis) and − 9.5 °C (for A. agrarius), we surmise that frostbite prevention may be the primary reason for this adaptation. It is likely that tail-belting has not previously been documented because free-ranging mice are rarely-recorded in the wild under extreme cold conditions. Given that these animals are so closely-related to laboratory rodents, this knowledge could potentially be relevant to researchers in various disciplines. We conclude by setting several directions for future research in this area.

2021 ◽  
Author(s):  
Rafal Stryjek ◽  
Michael H Parsons ◽  
Piotr Bebas

Rodents are among the most successful mammals because they have the ability to adapt to a broad range of environmental conditions. Here, we present the first record of a hitherto unknown thermal adaptation to low temperatures that repeatedly occurred in two species of non-commensal rodents (Apodemus flavicollis and Apodemus agrarius) between January 16 and February 11, 2021. The classic rodent literature implies that rodents prevent heat loss via a broad range of behavioral adaptations including sheltering, sitting on their tails, curling into a ball, or huddling with conspecifics. Yet, we have repeatedly observed an undescribed behavior which we refer to as tail-belting. The behavior was performed during the lowest temperatures, whereby animals - which were attracted out of their over-wintering burrows for a highly-palatable food reward - lift and curl the tail medially, before resting it on the dorsal, medial rump while feeding or resting between feeding bouts. We documented 115 instances of the tail-belting behavior; 38 in Apodemus agrarius, and 77 in Apodemus flavicollis. In A. flavicollis, this behavior was only observed below -6.9C, and occurred more often than in A. Agrarius. The latter only demonstrated the behavior below -9.5C. We further detail the environmental conditions under which the behavior is performed, and provide possible functions. We then set several directions for future research in this area.


2021 ◽  
pp. 1-11
Author(s):  
Charles Salame ◽  
Inti Gonzalez ◽  
Rodrigo Gomez-Fell ◽  
Ricardo Jaña ◽  
Jorge Arigony-Neto

Abstract This paper provides the first evidence for sea-ice formation in the Cordillera Darwin (CD) fjords in southern Chile, which is farther north than sea ice has previously been reported for the Southern Hemisphere. Initially observed from a passenger plane in September 2015, the presence of sea ice was then confirmed by aerial reconnaissance and subsequently identified in satellite imagery. A time series of Sentinel-1 and Landsat-8 images during austral winter 2015 was used to examine the chronology of sea-ice formation in the Cuevas fjord. A longer time series of imagery across the CD was analyzed from 2000 to 2017 and revealed that sea ice had formed in each of the 13 fjords during at least one winter and was present in some fjords during a majority of the years. Sea ice is more common in the northern end of the CD, compared to the south where sea ice is not typically present. Is suggested that surface freshening from melting glaciers and high precipitation reduces surface salinity and promotes sea-ice formation within the semi-enclosed fjord system during prolonged periods of cold air temperatures. This is a unique set of initial observations that identify questions for future research in this remote area.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e047349
Author(s):  
Ewoud ter Avest ◽  
Barbara C van Munster ◽  
Raymond J van Wijk ◽  
Sanne Tent ◽  
Sanne Ter Horst ◽  
...  

PurposeResearch in acute care faces many challenges, including enrolment challenges, legal limitations in data sharing, limited funding and lack of singular ownership of the domain of acute care. To overcome these challenges, the Center of Acute Care of the University Medical Center Groningen in the Netherlands, has established a de novo data, image and biobank named ‘Acutelines’.ParticipantsClinical data, imaging data and biomaterials (ie, blood, urine, faeces, hair) are collected from patients presenting to the emergency department (ED) with a broad range of acute disease presentations. A deferred consent procedure (by proxy) is in place to allow collecting data and biomaterials prior to obtaining written consent. The digital infrastructure used ensures automated capturing of all bed-side monitoring data (ie, vital parameters, electrophysiological waveforms) and securely importing data from other sources, such as the electronic health records of the hospital, ambulance and general practitioner, municipal registration and pharmacy. Data are collected from all included participants during the first 72 hours of their hospitalisation, while follow-up data are collected at 3 months, 1 year, 2 years and 5 years after their ED visit.Findings to dateEnrolment of the first participant occurred on 1 September 2020. During the first month, 653 participants were screened for eligibility, of which 180 were approached as potential participants. In total, 151 (84%) provided consent for participation of which 89 participants fulfilled criteria for collection of biomaterials.Future plansThe main aim of Acutelines is to facilitate research in acute medicine by providing the framework for novel studies and issuing data, images and biomaterials for future research. The protocol will be extended by connecting with central registries to obtain long-term follow-up data, for which we already request permission from the participant.Trial registration numberNCT04615065.


Behaviour ◽  
2017 ◽  
Vol 154 (7-8) ◽  
pp. 875-907 ◽  
Author(s):  
Erica S. Dunayer ◽  
Carol M. Berman

Throughout the primate order, individuals are highly motivated to handle infants that are not their own. Given the differing and often conflicting interests of the various participants in handling interactions (handler, infant, and mother), most functional hypotheses are specific to particular handling roles. Here we explore one hypothesis that may apply to all participants, but that has received relatively little attention: that handling may facilitate the formation and maintenance of social bonds. Using free-ranging rhesus macaques (Macaca mulatta) on Cayo Santiago, we examine the relationship between infant handling in the early weeks and the strength and diversity of infant social bonds months later, when infant relationships were more independent from those of their mothers. Our results largely confirm the influence of several social characteristics (kinship, rank, sex, and age) in governing handling interactions. They also provide the first evidence that early handling is associated with later social bonds that are stronger than expected based on these social characteristics. However, the enhancement of bonds is largely confined to related handlers; frequent unrelated handlers did not generally go on to form strong bonds with infants. This suggests that kinship may be a sort of prerequisite to the enhancement of social bonds via handling. Given the adaptive benefits of strong social bonds among adult primates, future research should investigate whether early infant handling may have longer term fitness effects.


2018 ◽  
Vol 373 (1740) ◽  
pp. 20160508 ◽  
Author(s):  
Sarah Benson-Amram ◽  
Geoff Gilfillan ◽  
Karen McComb

Playback experiments have proved to be a useful tool to investigate the extent to which wild animals understand numerical concepts and the factors that play into their decisions to respond to different numbers of vocalizing conspecifics. In particular, playback experiments have broadened our understanding of the cognitive abilities of historically understudied species that are challenging to test in the traditional laboratory, such as members of the Order Carnivora. Additionally, playback experiments allow us to assess the importance of numerical information versus other ecologically important variables when animals are making adaptive decisions in their natural habitats. Here, we begin by reviewing what we know about quantity discrimination in carnivores from studies conducted in captivity. We then review a series of playback experiments conducted with wild social carnivores, including African lions, spotted hyenas and wolves, which demonstrate that these animals can assess the number of conspecifics calling and respond based on numerical advantage. We discuss how the wild studies complement those conducted in captivity and allow us to gain insights into why wild animals may not always respond based solely on differences in quantity. We then consider the key roles that individual discrimination and cross-modal recognition play in the ability of animals to assess the number of conspecifics vocalizing nearby. Finally, we explore new directions for future research in this area, highlighting in particular the need for further work on the cognitive basis of numerical assessment skills and experimental paradigms that can be effective in both captive and wild settings. This article is part of a discussion meeting issue ‘The origins of numerical abilities’.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 564
Author(s):  
Supakorn Potijun ◽  
Chonlada Yaisamlee ◽  
Anchalee Sirikhachornkit

Microalgae have long been used for the commercial production of natural colorants such as carotenoids and chlorophyll. Due to the rising demand for carotenoids and other natural products from microalgae, strategies to increase production efficiency are urgently needed. The production of microalgal biorefineries has been limited to countries with moderate climates. For countries with cooler climates and less daylight, methodologies for the efficient production of microalgal biorefineries need to be investigated. Algal strains that can be safely consumed as whole cells are also attractive alternatives for developing as carotenoid supplements, which can also contain other compounds with health benefits. Using such strains helps to eliminate the need for hazardous solvents for extraction and several other complicated steps. In this study, the mesophilic green alga Chlamydomonas reinhardtii was employed to study the effects of cold stress on cell physiology and the production of pigments and storage compounds. The results showed that temperatures between 10 and 20 °C induced carotenoid and chlorophyll accumulation in the wild-type strain of C. reinhardtii. Interestingly, the increased level of carotenoids suggested that they might play a crucial role in cold stress acclimation. A temperature of 15 °C resulted in the highest carotenoid and chlorophyll productivity. At this temperature, carotenoid and chlorophyll productivity was 2 times and 1.3 times higher than at 25 °C, respectively. Subjecting a mutant defective in lutein and zeaxanthin accumulation to cold stress revealed that these two carotenoids are not essential for cold stress survival. Therefore, cold temperature could be used as a strategy to induce and increase the productivity of pigments in C. reinhardtii.


2005 ◽  
Vol 27 (1) ◽  
pp. 95 ◽  
Author(s):  
PM Johnson ◽  
S Lloyd ◽  
T Vallance ◽  
MDB Eldridge

THE musky rat-kangaroo (Hypsiprymnodon moschatus) is endemic to the tropical rainforests of north-east Queensland (Johnson and Strahan 1982). It is the smallest (510 ? 530 g) and most unusual member of the marsupial superfamily Macropodoidea (Dennis and Johnson 1995). Unlike other macropodoids, H. moschatus is frugivorous, diurnal, has an opposable first digit on the pes, a running quadrupedal gait and possesses a relatively unspecialised digestive tract (Johnson and Strahan 1982; Dennis 2002). It also differs from all other macropodoids in typically giving birth to multiple young, usually twins ? although single young and triplets are regularly reported both in the wild and in captivity (Troughton 1967; Johnson and Strahan 1982; Johnson et al. 1983; Dennis and Marsh 1997; Lloyd 2001). However, the birth of more than three young has not previously been observed in H. moschatus or any other macropodoid, even though all species possess four teats.


2013 ◽  
Vol 22 (4) ◽  
pp. 519-524 ◽  
Author(s):  
Sócrates Fraga da Costa Neto ◽  
Vinicius Menezes Tunholi Alves ◽  
Victor Menezes Tunholi Alves ◽  
Juberlan Silva Garcia ◽  
Marcos Antônio José dos Santos ◽  
...  

The South American water rat Nectomys squamipes is a wild mammal reservoir of Schistosoma mansoni in Brazil. In the present study, wild rodents were collected in the field and categorized into two groups: infected and uninfected by S. mansoni. Blood was collected to analyze changes in the serum glucose level (mg/dL) and liver fragments were used to determine the hepatic glycogen content (mg of glucose/g tissue). The histological examination showed inflammatory granulomatous lesions in different phases of development in the liver of rodents naturally infected with S. mansoni, in some cases with total or partial occlusion of the vascular lumen. Early lesions were characterized by the presence of inflammatory infiltrate around morphologically intact recently deposited eggs. Despite the significance of these histological lesions, the biochemical changes differed in extent. N. squamipes naturally infected byS. mansoni showed no variation in hepatic glycogen reserves. These findings were accompanied by a significant increase in plasma glucose contents, probably as a consequence of amino acids deamination, which are degraded, resulting in the formation of intermediates used as precursors for the glucose formation, without compromising the reserves of liver glycogen. In the wild, naturally infected N. squamipes can maintainS. mansoni infections without undergoing alterations in its carbohydrate metabolism, which minimizes the deleterious effects of S. mansoni.


2020 ◽  
Vol 60 (6) ◽  
pp. 1469-1480 ◽  
Author(s):  
Beth A McCaw ◽  
Tyler J Stevenson ◽  
Lesley T Lancaster

Synopsis Epigenetics represents a widely accepted set of mechanisms by which organisms respond to the environment by regulating phenotypic plasticity and life history transitions. Understanding the effects of environmental control on phenotypes and fitness, via epigenetic mechanisms, is essential for understanding the ability of organisms to rapidly adapt to environmental change. This review highlights the significance of environmental temperature on epigenetic control of phenotypic variation, with the aim of furthering our understanding of how epigenetics might help or hinder species’ adaptation to climate change. It outlines how epigenetic modifications, including DNA methylation and histone/chromatin modification, (1) respond to temperature and regulate thermal stress responses in different kingdoms of life, (2) regulate temperature-dependent expression of key developmental processes, sex determination, and seasonal phenotypes, (3) facilitate transgenerational epigenetic inheritance of thermal adaptation, (4) adapt populations to local and global climate gradients, and finally (5) facilitate in biological invasions across climate regions. Although the evidence points towards a conserved role of epigenetics in responding to temperature change, there appears to be an element of temperature- and species-specificity in the specific effects of temperature change on epigenetic modifications and resulting phenotypic responses. The review identifies areas of future research in epigenetic responses to environmental temperature change.


2007 ◽  
Vol 101 (5) ◽  
pp. 1389-1392 ◽  
Author(s):  
Jean-Pierre Pointier ◽  
Christine Coustau ◽  
Daniel Rondelaud ◽  
André Theron

Sign in / Sign up

Export Citation Format

Share Document