scholarly journals First record of 'tail-belting' in two species of free-ranging rodents (Apodemus flavicollis and Apodemus agrarius): Adaptation to prevent frostbite?

2021 ◽  
Author(s):  
Rafal Stryjek ◽  
Michael H Parsons ◽  
Piotr Bebas

Rodents are among the most successful mammals because they have the ability to adapt to a broad range of environmental conditions. Here, we present the first record of a hitherto unknown thermal adaptation to low temperatures that repeatedly occurred in two species of non-commensal rodents (Apodemus flavicollis and Apodemus agrarius) between January 16 and February 11, 2021. The classic rodent literature implies that rodents prevent heat loss via a broad range of behavioral adaptations including sheltering, sitting on their tails, curling into a ball, or huddling with conspecifics. Yet, we have repeatedly observed an undescribed behavior which we refer to as tail-belting. The behavior was performed during the lowest temperatures, whereby animals - which were attracted out of their over-wintering burrows for a highly-palatable food reward - lift and curl the tail medially, before resting it on the dorsal, medial rump while feeding or resting between feeding bouts. We documented 115 instances of the tail-belting behavior; 38 in Apodemus agrarius, and 77 in Apodemus flavicollis. In A. flavicollis, this behavior was only observed below -6.9C, and occurred more often than in A. Agrarius. The latter only demonstrated the behavior below -9.5C. We further detail the environmental conditions under which the behavior is performed, and provide possible functions. We then set several directions for future research in this area.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafal Stryjek ◽  
Michael H. Parsons ◽  
Piotr Bebas

AbstractRodents are among the most successful mammals because they have the ability to adapt to a broad range of environmental conditions. Here, we present the first record of a previously unknown thermal adaptation to cold stress that repeatedly occurred in two species of non-commensal rodents (Apodemus flavicollis and Apodemus agrarius). The classic rodent literature implies that rodents prevent heat loss via a broad range of behavioral adaptations including sheltering, sitting on their tails, curling into a ball, or huddling with conspecifics. Here, we have repeatedly observed an undescribed behavior which we refer to as “tail-belting”. This behavior was performed under cold stress, whereby animals lift and curl the tail medially, before resting it on the dorsal, medial rump while feeding or resting. We documented 115 instances of the tail-belting behavior; 38 in Apodemus agrarius, and 77 in Apodemus flavicollis. Thermal imaging data show the tails remained near ambient temperature even when temperatures were below 0 °C. Since the tail-belting occurred only when the temperature dropped below − 6.9 °C (for A. flavicollis) and − 9.5 °C (for A. agrarius), we surmise that frostbite prevention may be the primary reason for this adaptation. It is likely that tail-belting has not previously been documented because free-ranging mice are rarely-recorded in the wild under extreme cold conditions. Given that these animals are so closely-related to laboratory rodents, this knowledge could potentially be relevant to researchers in various disciplines. We conclude by setting several directions for future research in this area.


2021 ◽  
pp. 1-11
Author(s):  
Charles Salame ◽  
Inti Gonzalez ◽  
Rodrigo Gomez-Fell ◽  
Ricardo Jaña ◽  
Jorge Arigony-Neto

Abstract This paper provides the first evidence for sea-ice formation in the Cordillera Darwin (CD) fjords in southern Chile, which is farther north than sea ice has previously been reported for the Southern Hemisphere. Initially observed from a passenger plane in September 2015, the presence of sea ice was then confirmed by aerial reconnaissance and subsequently identified in satellite imagery. A time series of Sentinel-1 and Landsat-8 images during austral winter 2015 was used to examine the chronology of sea-ice formation in the Cuevas fjord. A longer time series of imagery across the CD was analyzed from 2000 to 2017 and revealed that sea ice had formed in each of the 13 fjords during at least one winter and was present in some fjords during a majority of the years. Sea ice is more common in the northern end of the CD, compared to the south where sea ice is not typically present. Is suggested that surface freshening from melting glaciers and high precipitation reduces surface salinity and promotes sea-ice formation within the semi-enclosed fjord system during prolonged periods of cold air temperatures. This is a unique set of initial observations that identify questions for future research in this remote area.


Author(s):  
Muhammed Jamsheer K ◽  
Manoj Kumar ◽  
Vibha Srivastava

AbstractThe Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iwona Kania-Kłosok ◽  
Wiesław Krzemiński ◽  
Antonio Arillo

AbstractFirst record of the genus Helius—long-rostrum cranefly from Maestrazgo Basin (eastern Spain, Iberian Penisula) is documented. Two new fossil species of the genus Helius are described from Cretaceous Spanish amber and compared with other species of the genus known from fossil record with particular references to these known from Cretaceous period. Helius turolensis sp. nov. is described from San Just amber (Lower Cretaceous, upper Albian) Maestrazgo Basin, eastern Spain, and Helius hispanicus sp. nov. is described from Álava amber (Lower Cretaceous, upper Albian), Basque-Cantabrian Basin, northern Spain. The specific body morphology of representatives of the genus Helius preserved in Spanish amber was discussed in relation to the environmental conditions of the Maestrazgo Basin and Basque-Cantabrian Basin in Cretaceous.


Behaviour ◽  
2017 ◽  
Vol 154 (7-8) ◽  
pp. 875-907 ◽  
Author(s):  
Erica S. Dunayer ◽  
Carol M. Berman

Throughout the primate order, individuals are highly motivated to handle infants that are not their own. Given the differing and often conflicting interests of the various participants in handling interactions (handler, infant, and mother), most functional hypotheses are specific to particular handling roles. Here we explore one hypothesis that may apply to all participants, but that has received relatively little attention: that handling may facilitate the formation and maintenance of social bonds. Using free-ranging rhesus macaques (Macaca mulatta) on Cayo Santiago, we examine the relationship between infant handling in the early weeks and the strength and diversity of infant social bonds months later, when infant relationships were more independent from those of their mothers. Our results largely confirm the influence of several social characteristics (kinship, rank, sex, and age) in governing handling interactions. They also provide the first evidence that early handling is associated with later social bonds that are stronger than expected based on these social characteristics. However, the enhancement of bonds is largely confined to related handlers; frequent unrelated handlers did not generally go on to form strong bonds with infants. This suggests that kinship may be a sort of prerequisite to the enhancement of social bonds via handling. Given the adaptive benefits of strong social bonds among adult primates, future research should investigate whether early infant handling may have longer term fitness effects.


2020 ◽  
Vol 60 (6) ◽  
pp. 1469-1480 ◽  
Author(s):  
Beth A McCaw ◽  
Tyler J Stevenson ◽  
Lesley T Lancaster

Synopsis Epigenetics represents a widely accepted set of mechanisms by which organisms respond to the environment by regulating phenotypic plasticity and life history transitions. Understanding the effects of environmental control on phenotypes and fitness, via epigenetic mechanisms, is essential for understanding the ability of organisms to rapidly adapt to environmental change. This review highlights the significance of environmental temperature on epigenetic control of phenotypic variation, with the aim of furthering our understanding of how epigenetics might help or hinder species’ adaptation to climate change. It outlines how epigenetic modifications, including DNA methylation and histone/chromatin modification, (1) respond to temperature and regulate thermal stress responses in different kingdoms of life, (2) regulate temperature-dependent expression of key developmental processes, sex determination, and seasonal phenotypes, (3) facilitate transgenerational epigenetic inheritance of thermal adaptation, (4) adapt populations to local and global climate gradients, and finally (5) facilitate in biological invasions across climate regions. Although the evidence points towards a conserved role of epigenetics in responding to temperature change, there appears to be an element of temperature- and species-specificity in the specific effects of temperature change on epigenetic modifications and resulting phenotypic responses. The review identifies areas of future research in epigenetic responses to environmental temperature change.


Author(s):  
E.L. Veera Prabakaran ◽  
K Senthil Vadivu ◽  
B Mouli Prasanth

Abstract Thin film sensors are used to monitor environmental conditions by measuring the physical parameters. By using thin film technology, the sensors are capable of conducting precise measurements. Moreover, the measurements are stable and dependable. Furthermore, inexpensive sensor devices can be produced. In this paper, thin film technology for the design and fabrication of sensors that are used in various applications is reviewed. Further, the applications of thin film sensors in the fields of biomedical, energy harvesting, optical, and corrosion applications are also presented. From the review, the future research needs and future perspectives are identified and discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ann Weaver

Adaptation is a biological mechanism by which organisms adjust physically or behaviorally to changes in their environment to become more suited to it. This is a report of free-ranging bottlenose dolphins’ behavioral adaptations to environmental changes from coastal construction in prime habitat. Construction was a 5-year bridge removal and replacement project in a tidal inlet along west central Florida’s Gulf of Mexico coastline. It occurred in two consecutive 2.5-year phases to replace the west and east lanes, respectively. Lane phases involved demolition/removal of above-water cement structures, below-water cement structures, and reinstallation of below + above water cement structures (N = 2,098 photos). Data were longitudinal (11 years: 2005–2016, N = 1,219 surveys 2–4 times/week/11 years, N = 4,753 dolphins, 591.95 h of observation in the construction zone, 126 before-construction surveys, 568 during-construction surveys, 525 after-construction surveys). The dependent variable was numbers of dolphins (count) in the immediate construction zone. Three analyses examined presence/absence, total numbers of dolphins, and numbers of dolphins engaged in five behavior states (forage-feeding, socializing, direct travel, meandering travel, and mixed states) across construction. Analyses were GLIMMIX generalized linear models for logistic and negative binomial regressions to account for observation time differences as an exposure (offset) variable. Results showed a higher probability of dolphin presence than absence before construction began, more total dolphins before construction, and significant decreases in the numbers of feeding but not socializing dolphins. Significant changes in temporal rhythms also revealed finer-grained adaptations. Conclusions were that the dolphins adapted to construction in two ways, by establishing feeding locations beyond the disturbed construction zone and shifting temporal rhythms of behaviors that they continued to exhibit in the construction zone to later in the day when construction activities were minimized. This is the first study to suggest that the dolphins learned to cope with coastal construction with variable adjustments.


2014 ◽  
Vol 41 ◽  
pp. 95-109 ◽  
Author(s):  
Maria Gurova ◽  
Clive Bonsall

 This paper discusses why large areas of the central and northern Balkans lack evidence of Mesolithic settlement and what implications this holds for future research into the Neolithization of the region. A marked shift in site distribution patterns between Upper Palaeolithic and Mesolithic is interpreted as a response to changing environmental conditions and resource availability. It is suggested that some important questions of the pattern, processes and timing of the transition to farming across the Balkan Peninsula may only be answered through new archaeological surveys of the Lower Danube valley and exploration of submerged landscapes along the Black Sea, Aegean and Adriatic coasts.


Sign in / Sign up

Export Citation Format

Share Document