scholarly journals Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Cao ◽  
Hayder A. Dhahad ◽  
M. A. El-Shorbagy ◽  
Hajar Q. Alijani ◽  
Mana Zakeri ◽  
...  

AbstractIn this study, a simple and green strategy was reported to prepare bimetallic nanoparticles (NPs) by the combination of zinc oxide (ZnO) and copper oxide (CuO) using Sambucus nigra L. extract. The physicochemical properties of these NPs such as crystal structure, size, and morphology were studied by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM). The results suggested that these NPs contained polygonal ZnO NPs with hexagonal phase and spherical CuO NPs with monoclinic phase. The anticancer activity of the prepared bimetallic NPs was evaluated against lung and human melanoma cell lines based on MTT assay. As a result, the bimetallic ZnO/CuO NPs exhibited high toxicity on melanoma cancer cells while their toxicity on lung cancer cells was low.

2012 ◽  
Vol 21 (01) ◽  
pp. 1250002 ◽  
Author(s):  
NGUYEN MANH HUNG ◽  
LAM THI HANG ◽  
NGUYEN VAN KHANH ◽  
DU THI XUAN THAO ◽  
NGUYEN VAN MINH

We investigate the effects of calcination time and concentration of solution on the structure, as well as optical properties in ZnWO4 nanopowder prepared by hydrothermal method. The prepared powder were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman scattering, optical absorption and photoluminescent spectroscopy (PL). It is shown that the grain size and morphology of ZnWO4 nanopowder can be controlled by adjusting the reaction time as well as the concentration of the solution. The resultant sample is a pure phase of ZnWO4 without any impurities. The result showed that the optical property of ZnWO4 nanopowders depend on their grain size. The optical band gap becomes narrower as the reaction time or concentration of solution is increased. The improved PL properties of the ZnWO4 crystallites can be obtained with the optimal concentration of the solution.


Author(s):  
Karthik Ramasamy ◽  
Weerakanya Maneerprakorn ◽  
Mohammad A. Malik ◽  
Paul O'Brien

Cobalt complexes of 1,1,5,5-tetramethyl-2,4-dithiobiuret, [Co{N(SCNMe 2 ) 2 } 3 ] ( 1 ), and 1,1,5,5-tetraisopropyl-2-thiobiuret, [Co{N(SOCN i Pr 2 ) 2 } 2 ] ( 2 ), have been synthesized and characterized. Both complexes were used as single-molecule precursors for the preparation of cobalt sulphide nanoparticles by thermolysis in hexadecylamine, octadecylamine or oleylamine. The powder X-ray diffraction pattern of as-prepared nanoparticles showed the hexagonal phase of Co 1− x S from complex 1 and mixtures of cubic and hexagonal Co 4 S 3 from complex 2 . Transmission electron microscopy images of material prepared from complex 1 showed spherical and trigonally shaped particles in the size range of 10–15 nm; whereas spheres, rods, trigonal prisms and pentagonally and hexagonally faceted crystallites were observed from complex 2 . This observation is the first of the Co 4 S 3 phase in a nanodispersed form.


2016 ◽  
Vol 35 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Elaheh Esmaeili ◽  
Mohammad Sabet ◽  
Masoud Salavati-Niasari ◽  
Kamal Saberyan

AbstractPbS nanostructures were synthesized successfully via hydrothermal approach with a new precursor. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis diffuse reflectance spectroscopy (DRS). The effect of different sulfur sources were investigated on product size and morphology.


2010 ◽  
Vol 663-665 ◽  
pp. 100-103
Author(s):  
Zhen Ni Du ◽  
Yong Cai Zhang ◽  
Zhi You Xu ◽  
Ming Zhang

The synthesis of hexagonal phase Zn1-xMnxS (x = 0–0.05) nanorods was achieved by hydrothermal treatment of zinc manganese diethyldithiocarbamates (Zn1-xMnx-(DDTC)2, x=0–0.05) in 40 mass % hydrate hydrazine aqueous solution at 180 °C for 12 h. The structure, composition and optical property of the obtained products were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra.


2014 ◽  
Vol 602-603 ◽  
pp. 19-22 ◽  
Author(s):  
Lin Qiang Gao ◽  
Hai Yan Chen ◽  
Zhen Wang ◽  
Xin Zou

Nanoscale LiTaO3 powders with perovskite structure were synthesized using the solvothermal technique with glycol as solvent at 240°C for 12h. The powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD was used to elucidate room temperature structures using Rietveld refinement. The powders were pure single pervoskite phase with high crystallinity. FESEM and TEM were used to determine particle size and morphology. The average LiTaO3 grain size was estimated to be < 200nm, and TEM images indicated that LiTaO3 particles had a brick-like morphology. In addition, the effect of the temperature on the LiTaO3 power characterisitics was also detailed studied.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
T. Prakash ◽  
R. Jayaprakash ◽  
G. Neri ◽  
Sanjay Kumar

ZnO nanostructures have been successfully prepared by a microwave irradiation method. The role of albumen as a template in addressing the size and morphology of ZnO has been investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG-DTA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. A heterogeneous mixture of Zn(OH)2 and ZnO was obtained in absence of albumen. Pure ZnO nanostructures, consisting of rod- and whisker-like nanoparticles embedded in a sheet matrix, were obtained in the presence of albumen. Optical and photoluminescence (PL) properties of the synthesized samples were also compared. Results obtained indicate that the microwave-assisted method is a promising low temperature, cheap, and fast method for the production of ZnO nanostructures.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1544 ◽  
Author(s):  
Marta Babicka ◽  
Magdalena Woźniak ◽  
Krzysztof Dwiecki ◽  
Sławomir Borysiak ◽  
Izabela Ratajczak

Cellulose nanocrystals were prepared using ionic liquids (ILs), 1-ethyl-3-methylimidazolium chloride [EMIM][Cl] and 1-propyl-3-methylimidazolium chloride [PMIM][Cl], from microcrystalline cellulose. The resultant samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD results showed that nanocellulose obtained by treatment with both ILs preserved basic cellulose I structure, but crystallinity index of samples (except for Sigmacell treated with [EMIM][Cl]) was lower in comparison to the starting microcrystalline cellulose. The DLS results indicated noticeably smaller particle sizes of prepared cellulose for material treated with [PMIM][Cl] compared to cellulose samples hydrolyzed with [EMIM][Cl], which were prone to agglomeration. The obtained nanocellulose had a rod-like structure that was confirmed by electron microscopy analyses. Moreover, the results described in this paper indicate that cation type of ILs influences particle size and morphology of cellulose after treatment with ionic liquids.


2013 ◽  
Vol 634-638 ◽  
pp. 2218-2221
Author(s):  
Xiu Hui Zhu ◽  
Jian Zhen Liu ◽  
Tian Ai ◽  
Hong Mei Yu

CuS nanochains were prepared via a simple hydrothermal reaction at 140 °C for 12 h, employing Cu(Ac)2•H2O and Thiourea as reactants in the absence of any structure-directing agent. The size and morphology of CuS nanochains were characterized by means of X-ray diffraction (XRD) and Transmission electron microscope (TEM); the optical properties of CuS nanochains were investigated by UV–vis absorption spectrum and Fourier transform infrared (FT-IR) measurements. CuS nanochains were found to be constructed by covellite CuS with a hexagonal phase and composed of nanorods with 40-100 nm length and 25 nm Width. The UV–vis absorption of CuS was observed an increased absorption from 300nm to 650 nm and the band gap of CuS nanochains was 1.91 eV.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Marcos A. Cheney ◽  
Pradip K. Bhowmik ◽  
Shingo Moriuchi ◽  
Mario Villalobos ◽  
Shizhi Qian ◽  
...  

The effect of mechanical stirring on the morphology of hexagonal layer-structure birnessite nanoparticles produced from decomposition ofKMnO4in dilute aqueousH2SO4is investigated, with characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA), andN2adsorption (BET). Mechanical stirring during an initial stage of synthesis is shown to produce black birnessite containing nanofibers, whereas granular particulates of brown birnessite are produced without stirring. This is the first reduction synthesis of black birnessite nanoparticles with dendritic morphology without any use of organic reductant, and suggests that a particular morphology can arise from structural preferences of Mn in acidic conditions rather than particular organic reactants. These results enlighten the possibility of synthesizing nanoparticles with controlled size and morphology.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Chao Qian ◽  
Tianmei Zeng ◽  
Hongrong Liu

Ytterbium oxide (Yb2O3) nanocrystals with different Eu3+(1%, 2%, 5%, and 10%) doped concentrations were synthesized by a facile hydrothermal method, subsequently by calcination at 700°C. The crystal phase, size, and morphology of prepared samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the as-prepared Yb2O3nanocrystals with sheet- and tube-like shape have cubic phase structure. The Eu3+doped Yb2O3nanocrystals were revealed to have good down conversion (DC) property and intensity of the DC luminescence can be modified by Eu3+contents. In our experiment the 1% Eu3+doped Yb2O3nanocrystals showed the strongest DC luminescence among the obtained Yb2O3nanocrystals.


Sign in / Sign up

Export Citation Format

Share Document