scholarly journals Proton beam irradiation induces invisible modifications under the surface of painted parchment

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Katharina Müller ◽  
Zita Szikszai ◽  
Ákos Csepregi ◽  
Róbert Huszánk ◽  
Zsófia Kertész ◽  
...  

AbstractIon beam analysis plays an important role in cultural heritage (CH) studies as it offers a combination of simultaneous and complementary analytical techniques (PIXE/PIGE/RBS) and spatially resolved mapping functions. Despite being considered non-destructive, the potential risk of beam-induced modifications during analysis is increasingly discussed. This work focuses on the impact of proton beams on parchment, present in our CH in form of unique historical manuscripts. Parchment is one of the organic, protein-based CH materials believed to be the most susceptible to radiation-induced changes. Various modification patterns, observed on parchment cross-sections by optical and electron microscopy are reported: discoloration (yellowing), formation of cavities and denaturation of collagen fibers. Considerable modifications were detected up to 100 µm deep into the sample for beam fluences of 4 µC/cm2 and higher. The presence of ultramarine paint on the parchment surface appears to increase the harmful effects of proton radiation. Based on our results, a maximum radiation dose of 0.5 µC/cm2 can be considered as ‘safe boundary’ for 2.3 MeV PIXE analysis of parchment under the applied conditions.

2009 ◽  
Vol 1215 ◽  
Author(s):  
Laurence Luneville ◽  
David Simeone ◽  
Gianguido Baldinozzi ◽  
Dominique Gosset ◽  
yves serruys

AbstractEven if the Binary Collision Approximation does not take into account relaxation processes at the end of the displacement cascade, the amount of displaced atoms calculated within this framework can be used to compare damages induced by different facilities like pressurized water reactors (PWR), fast breeder reactors (FBR), high temperature reactors (HTR) and ion beam facilities on a defined material. In this paper, a formalism is presented to evaluate the displacement cross-sections pointing out the effect of the anisotropy of nuclear reactions. From this formalism, the impact of fast neutrons (with a kinetic energy En superior to 1 MeV) is accurately described. This point allows calculating accurately the displacement per atom rates as well as primary and weighted recoil spectra. Such spectra provide useful information to select masses and energies of ions to perform realistic experiments in ion beam facilities.


2014 ◽  
Vol 20 (6) ◽  
pp. 1826-1834
Author(s):  
Enne Faber ◽  
Willem P. Vellinga ◽  
Jeff T.M. De Hosson

AbstractThis paper investigates the adhesive interface in a polymer/metal (polyethylene terephthalate/steel) laminate that is subjected to uniaxial strain. Cross-sections perpendicular to such interfaces were created with a focused ion beam and imaged with scanning electron microscopy during straining in the electron microscope. During in situ straining, glide steps formed by the steel caused traction at the interface and initiated crazes in the polyethylene terephthalate (PET). These crazes readily propagated along the free surface of the PET layer. Similar crazing has not been previously encountered in laminates that were pre-strained or in numerical calculations. The impact of focused ion beam treatments on mechanical properties of the polymer/metal laminate system was therefore investigated. It was found that mechanical properties such as toughness of PET are dramatically influenced by focused ion beam etching. It was also found that this change in mechanical properties has a different effect on the pre-strained and in situ strained samples.


2019 ◽  
Vol 70 (3) ◽  
pp. 227-235
Author(s):  
Jiri Haze ◽  
Jiri Hofman

Abstract The paper discusses a novel temperature controller and a related test method allowing in-situ measurement of total ionising dose-induced changes in the impact of temperature on electronic devices for space applications. Various results of pilot radiation experiments (testing commercial PMOS transistors, RADFETs, and voltage references) are also presented.


2011 ◽  
Vol 2011 (DPC) ◽  
pp. 002071-002111
Author(s):  
Peter Ramm ◽  
Armin Klumpp ◽  
German Franz ◽  
Laurens Kwakman

Today 3D integration based on through silicon vias (TSV) is a well-accepted approach to overcome the performance bottleneck and simultaneously shrink the form factor. According to the ITRS road map [1] there is a variety of reasons for application of 3D integration, such as miniaturization, improved circuit performance, lower power consumption and heterogeneous integration. World-wide, several full 3D process flows have been demonstrated. However, there is a strong demand for considering the behaviour and reliability of 3D-integrated systems [2]. Explicitly, the impact of 3D processes on the system, e.g. thermo-mechanical stresses, has to be evaluated before the implementation to production lines. A test chip for reliability evaluation of 3D TSV technologies was designed and fabricated by Fraunhofer EMFT. The 3D-integrated reliability test chip is a 3-level-stack with TSVs through a middle (2nd) device layer to connect structures on the bottom (1st) level with the top (3rd) level device. The layout is modular, so you can test basic assembly processing with the combination of level 1 with level 2 only and the influence of additional processing when adding level 3. For reliability testing, temperature cycling following the JEDEC standard was performed from −55 C ° to +150 °C (at a soak time of 5 minutes). Additionally, analysis was done by cross sectioning and reversed engineering. The 3D-integrated test chips were fabricated by application of Fraunhofer EMFT's TSV SLID technology. The applied 3D TSV process is based on intermetallic compound (IMC) bonding and TSV formation before stacking [3]. Reliability issues related to thermo-mechanical stress caused by the 3D integration process have to be considered. Failures of 3D integrated systems caused by TSV formation and the permanent bonding process were analysed by a novel high rate milling Focussed Ion Beam equipment. Figure 1 schematically shows the application of the novel FIB analysis technique for the areas of interest (IMC bond, TSV cross sections). Compared to classical FIB systems, the new equipment allows to remove material significantly faster while maintaining good resolution at low beam currents, important for the subsequent analysis. Cross sections of the 3-layer stack are shown in Figure 2. The merits of the novel plasma FIB and the resulting failure analysis will be discussed in detail.


2012 ◽  
Vol 39 (12) ◽  
pp. 7644-7649 ◽  
Author(s):  
Michael V. Lawrence ◽  
Mert Saynak ◽  
David V. Fried ◽  
Ted A. Bateman ◽  
Rebecca L. Green ◽  
...  

2000 ◽  
Vol 612 ◽  
Author(s):  
T. Berger ◽  
L. Arnaud ◽  
R. Gonella ◽  
I. Touet ◽  
G. Lormand

AbstractWe have studied the effect of texture (X-ray diffraction pole figures) and grain morphology (Focus Ion Beam cross-sections) on the electromigration performances of copper damascene interconnects. Three different metallizations have been characterized : Chemical Vapor Deposition copper deposited on TiN (process A) and electroplated copper deposited either on Ta (process B) or TaN (process C). The reliability performance of these interconnects has been evaluated using both Wafer Level Reliability (WLR) and Package Level Reliability (PLR) tests on 4 and 0.6 νm wide lines using single metal level test structures. On the basis of the activation energy values and failure analysis observations, we concluded that interfacial diffusion plays a key role in the electromigration phenomenon for processes B and C whereas grain boundaries seem to be the active diffusion path for process A. The existence of several failure mechanisms during electromigration tests (interfacial or grain boundary diffusions), the impact of the damascene architecture on microstructure (sidewall textures and non columnar grain shapes) and the copper propensity for twinning seem to mask the impact of texture on the electromigration reliability of copper damascene interconnects.


2015 ◽  
Vol 239 ◽  
pp. 110-148 ◽  
Author(s):  
Divya Singh ◽  
B. Bhattacharya ◽  
Hardev Singh Virk

Polymers are a class of materials widely used in different fields of applications. With imminent applications of polymers, the study of radiation induced changes in polymers has become an obvious scientific demand. The bombardment by ion beam radiations has become one of the most promising techniques in present day polymer research. When the polymers are irradiated, a variety of physical and chemical changes takes place due to energy deposition of the radiation in the polymer matrix. Scissoring, cross-linking, recombination, radical decomposition, etc. are some of the interesting changes that are obvious in polymers. The modification in polymer properties by irradiation depends mainly on the nature of radiation and the type of polymer used.Polymer electrolytes are obtained by modifying polymers by doping, complexing, or other chemical processes. In general, they suffer from low conductivity due to high crystallinity of the matrix. The effect of radiation on polymer electrolyte is expected to alter their crystalline nature vis-a-vis electrical properties. This review article shall elaborate modifications in the physical and chemical properties of polymer electrolytes and their composites. The variations in properties have been explored on PEO based polymer electrolyte and correlated with the parameters responsible for such changes. Also a comparison with different types of the polymers irradiated with a wide range of ion beams has been established.


1989 ◽  
Vol 157 ◽  
Author(s):  
O. Meyer ◽  
J. Geerk ◽  
T. Kroner ◽  
Q. Li ◽  
G. Linker ◽  
...  

ABSTRACTIon irradiation and implantation experiments of high temperature superconductors (HTSC) thin films resulted in many interesting effects. Among those are: (i) the superlinear increase of the resistivity, p, with ion fluence, φ, leading to a metal to insulator transformation, (ii) the large recovery above 150 K of the radiation induced changes of ρ and Tc observed in low temperature irradiation experiments, and (iii) the large structural changes such as the increase of the c-axis lattice parameter with φ, the radiation induced orthorhombic to tetragonal phase transition, and the amorphization. Displaced oxygen atoms play an important role for the observed property changes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yaoxiang Li ◽  
Jatinder Singh ◽  
Rency Varghese ◽  
Yubo Zhang ◽  
Oluseyi O. Fatanmi ◽  
...  

AbstractThe field of biodosimetry has seen a paradigm shift towards an increased use of molecular phenotyping technologies including omics and miRNA, in addition to conventional cytogenetic techniques. Here, we have used a nonhuman primate (NHP) model to study the impact of gamma-irradiation on alterations in blood-based gene expression. With a goal to delineate radiation induced changes in gene expression, we followed eight NHPs for 60 days after exposure to 6.5 Gy gamma-radiation for survival outcomes. Analysis of differential gene expression in response to radiation exposure yielded 26,944 dysregulated genes that were not significantly impacted by sex. Further analysis showed an increased association of several pathways including IL-3 signaling, ephrin receptor signaling, ErbB signaling, nitric oxide signaling in the cardiovascular system, Wnt/β-catenin signaling, and inflammasome pathway, which were associated with positive survival outcomes in NHPs after acute exposure to radiation. This study provides novel insights into major pathways and networks involved in radiation-induced injuries that may identify biomarkers for radiation injury.


2021 ◽  
Vol 10 (10) ◽  
pp. 205846012110508
Author(s):  
Maria Correia de Verdier ◽  
Elisabeth Ronne-Engström ◽  
Ljubisa Borota ◽  
Kristina Nilsson ◽  
Erik Blomquist ◽  
...  

Background Treatment of intracranial arteriovenous malformations (AVMs) includes surgery, radiation therapy, endovascular occlusion, or a combination. Proton radiation therapy enables very focused radiation, minimizing dose to the surrounding brain. Purpose To evaluate the presence of radiation-induced changes on post-treatment MRI in patients with AVMs treated with proton radiation and to compare these with development of symptoms and nidus obliteration. Material and Methods Retrospective review of pre- and post-treatment digital subtraction angiography and MRI and medical records in 30 patients with AVMs treated with proton radiation. Patients were treated with two or five fractions; total radiation dose was 20–35 physical Gy. Vasogenic edema (minimal, perinidal, or severe), contrast enhancement (minimal or annular), cavitation and nidus obliteration (total, partial, or none) were assessed. Results 26 of 30 patients (87%) developed MRI changes. Vasogenic edema was seen in 25 of 30 (83%), abnormal contrast enhancement in 18 of 26 (69%) and cavitation in 5 of 30 (17%). Time from treatment to appearance of MRI changes varied between 5 and 25 months (median 7, mean 10). Seven patients developed new or deteriorating symptoms that required treatment with corticosteroids; all these patients had extensive MRI changes (severe vasogenic edema and annular contrast enhancement). Not all patients with extensive MRI changes developed symptoms. We found no relation between MRI changes and nidus obliteration. Conclusion Radiation-induced MRI changes are seen in a majority of patients after proton radiation treatment of AVMs. Extensive MRI changes are associated with new or deteriorating symptoms.


Sign in / Sign up

Export Citation Format

Share Document