FIB-Etching of Polymer/Metal Laminates and its Effect on Mechanical Performance

2014 ◽  
Vol 20 (6) ◽  
pp. 1826-1834
Author(s):  
Enne Faber ◽  
Willem P. Vellinga ◽  
Jeff T.M. De Hosson

AbstractThis paper investigates the adhesive interface in a polymer/metal (polyethylene terephthalate/steel) laminate that is subjected to uniaxial strain. Cross-sections perpendicular to such interfaces were created with a focused ion beam and imaged with scanning electron microscopy during straining in the electron microscope. During in situ straining, glide steps formed by the steel caused traction at the interface and initiated crazes in the polyethylene terephthalate (PET). These crazes readily propagated along the free surface of the PET layer. Similar crazing has not been previously encountered in laminates that were pre-strained or in numerical calculations. The impact of focused ion beam treatments on mechanical properties of the polymer/metal laminate system was therefore investigated. It was found that mechanical properties such as toughness of PET are dramatically influenced by focused ion beam etching. It was also found that this change in mechanical properties has a different effect on the pre-strained and in situ strained samples.

2009 ◽  
Vol 24 (3) ◽  
pp. 844-852 ◽  
Author(s):  
M.J. Cordill ◽  
N.R. Moody ◽  
S.V. Prasad ◽  
J.R. Michael ◽  
W.W. Gerberich

In ductile metals, sliding contact induces plastic deformation resulting in subsurfaces, the mechanical properties of which are different from those of the bulk. This article describes a novel combination of nanomechanical test methods and analysis techniques to evaluate the mechanical behavior of the subsurfaces generated underneath a wear surface. In this methodology, nanoscratch techniques were first used to generate wear patterns as a function of load and number of cycles using a Hysitron TriboIndenter. Measurements were made on a (001) single crystal plane along two crystallographic directions, <001> and <011>. Nanoindentation was then used to measure mechanical properties in each wear pattern. The results on the (001) single crystal nickel plane showed that there was a strong increase in hardness with increasing applied load that was accompanied by a change in surface deformation. The amount of deformation underneath the wear patterns was examined from focused ion beam cross-sections of the wear patterns.


Author(s):  
R. Alani ◽  
R. J. Mitro ◽  
W. Hauffe

Abstract The semiconductor industry routinely prepares crosssectional SEM specimens using several traditional techniques. Included in these are cleaving, mechanical polishing, wet chemical etching and focused ion beam (FIB) milling. This presentation deals with a new alternate method for preparation of SEM semiconductor specimens based upon a dedicated broad ion beam instrument. Offered initially as an alternative to wet chemical etching, the instrument was designed to etch and coat SEM and metallographic specimens in one vacuum chamber using inert gas (Ar) ion beams. The system has recently undergone further enhancement by introducing iodine Reactive Ion Beam Etching (RIBE) producing much improved etching/cleaning capabilities compared with inert gas ion beam etching. Further results indicate Ar broad ion beam etching can offer a rapid, simple, more affordable alternative (to FIB machines) for precision cross sections and for “slope cutting,” a technique producing large cross-sections within a short time frame. The overall effectiveness of this system for iodine RIBE etching, for precision cross sectioning and “slope cutting” will be shown for a number of traditional and advanced semiconductor devices.


Author(s):  
Seo-Jin Kim ◽  
Byung-Kyu Park ◽  
Christopher H. Kang

Abstract In semiconductor manufacturing technology, copper has been widely used for BEOL process due to better conductivity than aluminum. TEM (Transmission Electron Microscopy) characterization has been played in key role to understand the process of semiconductor manufacturing. Gallium base Focused Ion Beam (FIB) is widely used on TEM sample preparation. The experiment to understand the impact of gallium which is from sample preparation process on Cu layer was performed. In-situ TEM studies have shown real time material characteristic of Cu at various temperature [1]. We observed the gallium aggregation phenomenon on Cu layer at round the temperature of 400°C. This thermal aggregation of gallium on Cu layer has been confirmed by EDS analysis in the study. Detectable amount of gallium was found in whole area in the sample before heating the sample at in-situ TEM work. This paper also introduces alternative solutions to resolve this gallium aggregation in copper layer including the sample preparation technique using Xe Plasma Focused Ion Beam (PFIB) [2]. This Xe PFIB showed the substantial improvement of specimen quality for the in-situ TEM experiment of sample preparation.


2004 ◽  
Vol 12 (1) ◽  
pp. 41-43
Author(s):  
Shane Roberts ◽  
Daniel Flatoff

Modern microelectronics have rapidly decreased in geometry to enhance the speed and processing power of computers. Advanced devices are approaching design rules of sub 0.13 micron in size, and the trend continues at the rate dictated by Moore's Law, Coupled with this reduction in device size, is a change in materials used for producing these devices. Traditional aluminum interconnect metallurgy and oxide dielectric materials are being replaced with copper and low-kmaterials in an effort to continue the trend of shrinking device sizes and higher processing capacities.These changes in materials and device sizes have provided the impetus for alternative methods for producing cross sections. Although focused ion beam instrumentation has been successfully used for preparing cross sections, a combinatorial approach using polishing and argon ion milling has been found to dramatically enhance the ability to produce high quality cross sectional samples in a reasonably short amount of time.


2016 ◽  
Vol 258 ◽  
pp. 416-419 ◽  
Author(s):  
Jiří Buršík ◽  
Ivo Kuběna ◽  
Vilma Buršíková ◽  
Pavel Souček ◽  
Lukáš Zábranský ◽  
...  

Several W-B-C layers were prepared by magnetron sputtering. The microstructure of thin layers was observed by means of scanning and transmission electron microscopy on cross sections prepared using a focused ion beam. Both undisturbed layers and the volume under indentation prints were inspected. The W-B-C layers are fine nanostructured materials about 2 μm thick and indents with loads up to 1 N do not cause any visible defects (cracks, delamination etc). The results were correlated with mechanical properties characterized by means of nanoindentation experiments in both the static and the dynamic loading regime using a Berkovich indenter. Elastic modulus, indentation hardness and fracture resistance of prepared nanostructured coatings were evaluated and discussed.


Author(s):  
Hyun-Taek Lee ◽  
Chung-Soo Kim ◽  
Hae-Sung Yoon ◽  
Ki-Hwan Jang ◽  
Jung-Oh Choi ◽  
...  

Nano particle deposition system (NPDS) had been developed for the creation of micro/nano structures with multimaterials in order to develop the micro/nano devices on the basis of specific localized surface on the multilayer. However, micro structures fabricated by NPDS show different mechanical properties when it compared to bulk material because of its porous and uneven deposition structure. To achieve reasonable mechanical properties of the structure fabricated by nanoscale 3D printing system, it requires in-situ mechanical property test method. Herein, a new approach for in-situ nanomechanical characterization system using microforce sensor and nanomanipulator installed in focused ion beam system. In this research, experimental setup for mechanical characterization was developed and mechanical property test was done in Focused Ion Beam (FIB) system. The specimen was fabricated by FIB milling process, then manipulation and compression processes are operated by this characterization system with real time imaging. The test was done for silver microstructures fabricated by NPDS and results show weaker hardness and smaller young’s modulus than bulk material.


2006 ◽  
Vol 983 ◽  
Author(s):  
Julia R Greer

AbstractRecent advances in the 2-beam focused ion beams technology has enabled researchers to not only perform high-precision nanolithography and micro-machining, but also to apply these novel fabrication techniques to investigating a broad range of materials' properties at the sub-micron and nano-scales. In our work, the FIB is utilized in manufacturing of sub-micron cylinders, or nano-pillars, as well as of TEM cross-sections to directly investigate plasticity of metals at these small length scales. Gold nano-pillars, ranging in diameter between 200 nm and several micrometers were fabricated from bulk gold and epitaxial gold films on MgO substrates and subsequently compressed using a Nanoindenter fitted with a custom-fabricated diamond flat punch. We show convincingly that fundamental mechanical properties like flow stress, yield strength, and stiffness strongly depend on the sample size, as some of our smaller specimens were found to plastically deform in uniaxial compression at stresses as high as 800 MPa, a value ~50 times higher than for bulk gold.We believe that these high strengths are hardened by dislocation starvation. In this mechanism, once the sample is small enough, the mobile dislocations have a higher probability of annihilating at a nearby free surface than of multiplying and being pinned by other dislocations. Therefore, plasticity is accommodated by the nucleation and motion of new dislocations rather than by interactions of existing dislocations, as is the case for bulk crystals. To validate this mechanism, direct observation of dislocations was accomplished by utilizing the Omniprobe micromanipulator, coupled with FIB-milling and Pt deposition, for fabrication of site-specific TEM specimens. Preliminary TEM images show the lack of mobile dislocations in deformed pillars, which agrees with the proposed dislocation starvation mechanism, as discussed.


2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


Sign in / Sign up

Export Citation Format

Share Document