scholarly journals Genome-wide identification and expression profiling analysis of Wnt family genes affecting adipocyte differentiation in cattle

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cuili Pan ◽  
Shuzhe Wang ◽  
Chaoyun Yang ◽  
Chunli Hu ◽  
Hui Sheng ◽  
...  

AbstractThe Wnt family features conserved glycoproteins that play roles in tissue regeneration, animal development and cell proliferation and differentiation. For its functional diversity and importance, this family has been studied in several species, but not in the Bovinae. Herein we identified 19 Wnt genes in cattle, and seven other species of Bovinae, and described their corresponding protein properties. Phylogenetic analysis clustered the 149 Wnt proteins in Bovinae, and 38 Wnt proteins from the human and mouse into 12 major clades. Wnt genes from the same subfamilies shared similar protein motif compositions and exon–intron patterns. Chromosomal distribution and collinearity analysis revealed that they were conservative in cattle and five species of Bovinae. RNA-seq data analysis indicated that Wnt genes exhibited tissue-specific expression in cattle. qPCR analysis revealed a unique expression pattern of each gene during bovine adipocytes differentiation. Finally, the comprehensive analysis indicated that Wnt2B may regulate adipose differentiation by activating FZD5, which is worthy of further study. Our study presents the first genome-wide study of the Wnt gene family in Bovinae, and lays the foundation for further functional characterization of this family in bovine adipocytes differentiation.

2021 ◽  
Author(s):  
Cuili Pan ◽  
Shuzhe Wang ◽  
Chaoyun Yang ◽  
Chunli Hu ◽  
Hui Sheng ◽  
...  

Abstract Wnt is a family of conserved glycoproteins that functions in a variety of crucial biological processes including tissue regeneration, animal development, and cell proliferation and differentiation. For its functional diversity and importance, Wnt gene family has gained considerable research interest in a variety of species. However, comprehensive identification and analysis of Wnt genes in Bovinae is lacking. In this study, we identified the repertoire of Wnt genes in cattle and seven other species of Bovinae and obtained 19 Wnt genes. Protein properties of these Wnt genes were also described. Phylogenetic analysis showed that the 149 Wnt proteins in Bovinae, together with 38 Wnt proteins from human and mouse, were clustered into 12 major clades. The Wnt genes belonging to the same subfamilies shared similar protein motif compositions and exon-intron patterns. Chromosomal distribution and collinearity analysis of Wnt genes among cattle and five species of Bovinae revealed that this gene family was conservative in evolution. RNA-seq data analysis indicated that Wnt genes exhibited tissue-specific expression patterns in cattle. qPCR analysis of Wnt gene family showed that each gene had a unique expression pattern during bovine adipocytes differentiation. And the comprehensive analysis indicated that Wnt2B may regulate adipose differentiation through activation of FZD5, which is worthy of further study. Our study presents the first genome-wide study of Wnt gene family in Bovinae, and lay the foundation for further functional characterization of the Wnt family in bovine adipocytes differentiation.


Author(s):  
Shefali Mishra ◽  
Pradeep Sharma ◽  
Rajender Singh ◽  
ratan Tiwari ◽  
Gyanendra Pratap Singh

The SnRK gene family is a key regulator playing an important role in plant stress response by phosphorylating the target protein to regulate the signalling pathways. The function of SnRK gene family has been reported in many species but is limited to Triticum asetivum. In this study, SnRK gene family in the wheat genome was identified and its structural characteristics were described. One hundred forty-seven SnRK genes distributed across 21 chromosomes were identified in the Triticum aestivum genome and categorised into three subgroups (SnRK1/2/3) based on phylogenetic analyses and domain types. The gene intron-exon structure and protein-motif composition of SnRKs were similar within each subgroup but different amongst the groups. Gene duplication between the wheat, Arabidopsis, rice and barley genomes was also investigated in order to get insight into the evolutionary aspects of the TaSnRK family genes. SnRK genes showed differential expression patterns in leaves, roots, spike, and grains. Redundant stress-related cis-elements were also found in the promoters of 129 SnRK genes and their expression levels varied widely following drought, ABA and light regulated elements. In particular, TaSnRK2.11 had higher and increased expression under the abiotic stresses and can be a candidate gene for the abiotc stress tolerance. The findings will aid in the functional characterization of TaSnRK genes for further research.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247170
Author(s):  
Md. Soyib Hasan ◽  
Vishal Singh ◽  
Shiful Islam ◽  
Md. Sifatul Islam ◽  
Raju Ahsan ◽  
...  

Glutathione transferases (GSTs) constitute an ancient, ubiquitous, multi-functional antioxidant enzyme superfamily that has great importance on cellular detoxification against abiotic and biotic stresses as well as plant development and growth. The present study aimed to a comprehensive genome-wide identification and functional characterization of GST family in one of the economically important legume plants—Medicago truncatula. Here, we have identified a total of ninety-two putative MtGST genes that code for 120 proteins. All these members were classified into twelve classes based on their phylogenetic relationship and the presence of structural conserved domain/motif. Among them, 7 MtGST gene pairs were identified to have segmental duplication. Expression profiling of MtGST transcripts revealed their high level of organ/tissue-specific expression in most of the developmental stages and anatomical tissues. The transcripts of MtGSTU5, MtGSTU8, MtGSTU17, MtGSTU46, and MtGSTU47 showed significant up-regulation in response to various abiotic and biotic stresses. Moreover, transcripts of MtGSTU8, MtGSTU14, MtGSTU28, MtGSTU30, MtGSTU34, MtGSTU46 and MtGSTF8 were found to be highly upregulated in response to drought treatment for 24h and 48h. Among the highly stress-responsive MtGST members, MtGSTU17 showed strong affinity towards its conventional substrates reduced glutathione (GSH) and 1‐chloro‐2,4‐dinitrobenzene (CDNB) with the lowest binding energy of—5.7 kcal/mol and -6.5 kcal/mol, respectively. Furthermore, the substrate-binding site residues of MtGSTU17 were found to be highly conserved. These findings will facilitate the further functional and evolutionary characterization of GST genes in Medicago.


2019 ◽  
Vol 20 (17) ◽  
pp. 4319 ◽  
Author(s):  
Li ◽  
Liu ◽  
Xia ◽  
Li ◽  
Niu ◽  
...  

CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are post-translationally cleaved and modified peptides from their corresponding pre-propeptides. Although they are only 12 to 13 amino acids in length, they are important ligands involved in regulating cell proliferation and differentiation in plant shoots, roots, vasculature, and other tissues. They function by interacting with their corresponding receptors. CLE peptides have been studied in many plants, but not in wheat. We identified 104 TaCLE genes in the wheat genome based on a genome-wide scan approach. Most of these genes have homologous copies distributed on sub-genomes A, B, and D. A few genes are derived from tandem duplication and segmental duplication events. Phylogenetic analysis revealed that TaCLE genes can be divided into five different groups. We obtained functional characterization of the peptides based on the evolutionary relationships among the CLE peptide families of wheat, rice, and Arabidopsis, and expression pattern analysis. Using chemically synthesized peptides (TaCLE3p and TaCLE34p), we found that TaCLE3 and TaCLE34 play important roles in regulating wheat and Arabidopsis root development, and wheat stem development. Overexpression analysis of TaCLE3 in Arabidopsis revealed that TaCLE3 not only affects the development of roots and stems, but also affects the development of leaves and fruits. These data represent the first comprehensive information on TaCLE family members.


2019 ◽  
Vol 20 (23) ◽  
pp. 5974 ◽  
Author(s):  
Xian Liu ◽  
Zhiguo Liu ◽  
Xinhui Niu ◽  
Qian Xu ◽  
Long Yang

NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and its paralogues NPR3 and NPR4, are bona fide salicylic acid (SA) receptors and play critical regulatory roles in plant immunity. However, comprehensive identification and analysis of the NPR1-like gene family had not been conducted so far in bread wheat and its relatives. Here, a total of 17 NPR genes in Triticum aestivum, five NPR genes in Triticum urartu, 12 NPR genes in Triticum dicoccoides, and six NPR genes in Aegilops tauschii were identified using bioinformatics approaches. Protein properties of these putative NPR1-like genes were also described. Phylogenetic analysis showed that the 40 NPR1-like proteins, together with 40 NPR1-related proteins from other plant species, were clustered into three major clades. The TaNPR1-like genes belonging to the same Arabidopsis subfamilies shared similar exon-intron patterns and protein domain compositions, as well as conserved motifs and amino acid residues. The cis-regulatory elements related to SA were identified in the promoter regions of TaNPR1-like genes. The TaNPR1-like genes were intensively mapped on the chromosomes of homoeologous groups 3, 4, and 5, except TaNPR2-D. Chromosomal distribution and collinearity analysis of NPR1-like genes among bread wheat and its relatives revealed that the evolution of this gene family was more conservative following formation of hexaploid wheat. Transcriptome data analysis indicated that TaNPR1-like genes exhibited tissue/organ-specific expression patterns and some members were induced under biotic stress. These findings lay the foundation for further functional characterization of NPR1-like proteins in bread wheat and its relatives.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250349
Author(s):  
Jiabin Ci ◽  
Xingyang Wang ◽  
Qi Wang ◽  
Fuxing Zhao ◽  
Wei Yang ◽  
...  

Gibberellin-dioxygenases genes plays important roles in the regulating plant development. However, Gibberellin-dioxygenases genes are rarely reported in maize, especially response to gibberellin (GA). In present study, 27 Gibberellin-dioxygenases genes were identified in the maize and they were classified into seven subfamilies (I-VII) based on phylogenetic analysis. This result was also further confirmed by their gene structure and conserved motif characteristics. And gibberellin-dioxygenases genes only occurred segmental duplication that occurs most frequently in plants. Furthermore, the gibberellin-dioxygenases genes showed different tissue expression pattern in different tissues and most of the gibberellin-dioxygenases genes showed tissue specific expression. Moreover, almost all the gibberellin-dioxygenases genes were significantly elevated in response to GA except for ZmGA2ox2 and ZmGA20ox10 of 15 gibberellin-dioxygenases genes normally expressed in leaves while 10 and 11 gibberellin-dioxygenases genes showed up and down regulated under GA treatment than that under normal condition in leaf sheath. In addition, we found that ZmGA2ox1, ZmGA2ox4, ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 might be potential genes for regulating balance of GAs which play essential roles in plant development. These findings will increase our understanding of Gibberellin-dioxygenases gene family in response to GA and will provide a solid base for further functional characterization of Gibberellin-dioxygenases genes in maize.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1389
Author(s):  
Xiqiang Liu ◽  
Han Zhang ◽  
Lin Ma ◽  
Zan Wang ◽  
Kun Wang

The trihelix transcription factor (GT) family is widely involved in regulating plant growth and development, and most importantly, responding to various abiotic stresses. Our study first reported the genome-wide identification and analysis of GT family genes in Medicago truncatula. Overall, 38 trihelix genes were identified in the M. truncatula genome and were classified into five subfamilies (GT-1, GT-2, SH4, GTγ and SIP1). We systematically analyzed the phylogenetic relationship, chromosomal distribution, tandem and segmental duplication events, gene structures and conserved motifs of MtGTs. Syntenic analysis revealed that trihelix family genes in M. truncatula had the most collinearity relationship with those in soybean followed by alfalfa, but very little collinearity with those in the maize and rice. Additionally, tissue-specific expression analysis of trihelix family genes suggested that they played various roles in the growth and development of specific tissues in M. truncatula. Moreover, the expression of some MtGT genes, such as MtGT19, MtGT20, MtGT22, and MtGT33, was dramatically induced by drought, salt, and ABA treatments, illustrating their vital roles in response to abiotic stresses. These findings are helpful for improving the comprehensive understanding of trihelix family; additionally, the study provides candidate genes for achieving the genetic improvement of stress resistance in legumes.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1061
Author(s):  
Xing Huang ◽  
Xuehui Bai ◽  
Tieying Guo ◽  
Zhouli Xie ◽  
Margit Laimer ◽  
...  

Coffee is one of the most popular beverages around the world, which is mainly produced from the allopolyploid Coffea arabica. The genomes of C. arabica and its two ancestors C. canephora and C. eugenioides have been released due to the development of next generation sequencing. However, few studies on C. arabica are related to the PIN-FORMED (PIN) auxin efflux transporter despite its importance in auxin-mediated plant growth and development. In the present study, we conducted a genome-wide analysis of the PIN gene family in the three coffee species. Totals of 17, 9 and 10 of the PIN members were characterized in C. Arabica, C. canephora and C. eugenioides, respectively. Phylogenetic analysis revealed gene loss of PIN1 and PIN2 homologs in C. arabica, as well as gene duplication of PIN5 homologs during the fractionation process after tetraploidy. Furthermore, we conducted expression analysis of PIN genes in C. arabica by in silico and qRT-PCR. The results revealed the existence of gene expression dominance in allopolyploid coffee and illustrated several PIN candidates in regulating auxin transport and homeostasis under leaf rust fungus inoculation and the tissue-specific expression pattern of C. arabica. Together, this study provides the basis and guideline for future functional characterization of the PIN gene family.


2021 ◽  
Author(s):  
Chao Wang ◽  
Guanghao Wang ◽  
Xiaojian Qu ◽  
Xiangyu Zhang ◽  
pingchuan Deng ◽  
...  

Background: The degradation of sucrose plays an important role in the process of crop biomass allocation and yield formation. Invertase (INV) irreversibly catalyzes the conversion of sucrose into glucose and fructose, which doomed its' important role in plant development and stress tolerance. However, the functions of INV genes in wheat, one of the most important crops, were less studied due to the polyploidy. Results: Here, we systematically analyzed the INV gene family based on the latest published wheat reference genomic information. A total of 126 TaINV genes were identified and classified into three classes based on the phylogenetic relationship and their gene structure. Of which, 11 and 83 gene pairs were identified as tandem and segmental duplication genes respectively, while the Ka/Ks ratios of tandem and segmental duplication TaINV genes were less than 1. Expression profile analysis shows that 18 TaINV genes have tissue-specific expression, and 54 TaINV genes were involved in stress response. Furthermore, RNA-seq showed that 35 genes are differentially expressed in grain weight NILs N0910-81L/N0910-81S, in which 9 TaINVs were stably detected by qRT-PCR at three time-points, 4, 7 and 10 DPA. Four of them (TaCWI47, TaCWI48, TaCWI50 and TaVI27) different expressed between the NILs resided in 4 QTL segments (QTGW.nwafu-5DL.1, QTGW.nwafu-5DL.2, QTGW.nwafu-7AS.1 and QTGW.nwafu-7AS.2). These findings facilitate function investigations of the wheat INV gene family and provide new insights into the grain development mechanism in wheat. Conclusions: Our results showed that allopolyploid events were the main reason for the expansion of the TaINV gene family in hexaploid wheat, and duplication genes might undergo purifying selection. The expression profiling of TaINV genes implied that they are likely to play an important role in wheat growth and development and adaption to stressful environments. And TaCWI47, TaCWI48, TaCWI50 and TaVI27 may have more important roles in grain developments. Our study lay a base for further dissecting the functional characterization of TaINV family members.


2020 ◽  
Author(s):  
Jialin Li ◽  
Ting Wang ◽  
Jing Han ◽  
Zhonghai Ren

Abstract Background: The basic/helix-loop-helix (bHLH) transcription factor family exists in all three eukaryotic kingdoms as important participants in biological growth and development. To date, the comprehensive genomic and functional analyses of bHLH genes has not been reported in cucumber (Cucumis sativus L.). Results: Here, a total of 142 bHLH genes were identified and classified into 32 subfamilies according to the conserved motifs, phylogenetic analysis and gene structures in cucumber. The sequences of CsbHLH proteins were highly conserved based on the results of multiple sequence alignment analyses. The chromosomal distribution, synteny analysis, and gene duplications of these 142 CsbHLHs were further analysed. Many elements related to stress responsiveness and plant hormones were present in the promoter regions of CsbHLH genes based on a cis-element analysis. By comparing the phylogeny of cucumber and Arabidopsis bHLH proteins, we found that cucumber bHLH proteins were clustered into different functional clades of Arabidopsis bHLH proteins. The expression analysis of selected CsbHLHs under abiotic stresses (NaCl, ABA and low-temperature treatments) identified five CsbHLH genes that could simultaneously respond to the three abiotic stresses. Tissue-specific expression profiles of these five genes were also analysed. In addition, 35S:CsbHLH041 enhanced the tolerance to salt and ABA in transgenic Arabidopsis and in cucumber seedlings, suggesting CsbHLH041 is an important regulator in response to abiotic stresses. Lastly, the functional interoperability network among the CsbHLH proteins was analysed. Conclusion: This study provided a good foundation for further research into the functions and regulatory mechanisms of CsbHLH proteins and identified candidate genes for stress resistance in cucumber.


Sign in / Sign up

Export Citation Format

Share Document