scholarly journals Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Babak Pakbin ◽  
Afshin Akhondzadeh Basti ◽  
Ali Khanjari ◽  
Wolfram Manuel Brück ◽  
Leila Azimi ◽  
...  

AbstractShigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems.

2015 ◽  
Vol 61 (1) ◽  
pp. 145-153 ◽  
Author(s):  
Jared S Farrar ◽  
Carl T Wittwer

Abstract BACKGROUND PCR is a key technology in molecular biology and diagnostics that typically amplifies and quantifies specific DNA fragments in about an hour. However, the kinetic limits of PCR are unknown. METHODS We developed prototype instruments to temperature cycle 1- to 5-μL samples in 0.4–2.0 s at annealing/extension temperatures of 62 °C–76 °C and denaturation temperatures of 85 °C–92 °C. Primer and polymerase concentrations were increased 10- to 20-fold above typical concentrations to match the kinetics of primer annealing and polymerase extension to the faster temperature cycling. We assessed analytical specificity and yield on agarose gels and by high-resolution melting analysis. Amplification efficiency and analytical sensitivity were demonstrated by real-time optical monitoring. RESULTS Using single-copy genes from human genomic DNA, we amplified 45- to 102-bp targets in 15–60 s. Agarose gels showed bright single bands at the expected size, and high-resolution melting curves revealed single products without using any “hot start” technique. Amplification efficiencies were 91.7%–95.8% by use of 0.8- to 1.9-s cycles with single-molecule sensitivity. A 60-bp genomic target was amplified in 14.7 s by use of 35 cycles. CONCLUSIONS The time required for PCR is inversely related to the concentration of critical reactants. By increasing primer and polymerase concentrations 10- to 20-fold with temperature cycles of 0.4–2.0 s, efficient (>90%), specific, high-yield PCR from human DNA is possible in <15 s. Extreme PCR demonstrates the feasibility of while-you-wait testing for infectious disease, forensics, and any application where immediate results may be critical.


2010 ◽  
Vol 56 (12) ◽  
pp. 1040-1049 ◽  
Author(s):  
Michal Slany ◽  
Martina Vanerkova ◽  
Eva Nemcova ◽  
Barbora Zaloudikova ◽  
Filip Ruzicka ◽  
...  

High-resolution melting analysis (HRMA) is a fast (post-PCR) high-throughput method to scan for sequence variations in a target gene. The aim of this study was to test the potential of HRMA to distinguish particular bacterial species of the Staphylococcus genus even when using a broad-range PCR within the 16S rRNA gene where sequence differences are minimal. Genomic DNA samples isolated from 12 reference staphylococcal strains ( Staphylococcus aureus , Staphylococcus capitis , Staphylococcus caprae , Staphylococcus epidermidis , Staphylococcus haemolyticus , Staphylococcus hominis , Staphylococcus intermedius , Staphylococcus saprophyticus , Staphylococcus sciuri , Staphylococcus simulans , Staphylococcus warneri , and Staphylococcus xylosus ) were subjected to a real-time PCR amplification of the 16S rRNA gene in the presence of fluorescent dye EvaGreen™, followed by HRMA. Melting profiles were used as molecular fingerprints for bacterial species differentiation. HRMA of S. saprophyticus and S. xylosus resulted in undistinguishable profiles because of their identical sequences in the analyzed 16S rRNA region. The remaining reference strains were fully differentiated either directly or via high-resolution plots obtained by heteroduplex formation between coamplified PCR products of the tested staphylococcal strain and phylogenetically unrelated strain.


2016 ◽  
Vol 54 (8) ◽  
pp. 2074-2081 ◽  
Author(s):  
Valentina Donà ◽  
Sara Kasraian ◽  
Agnese Lupo ◽  
Yuvia N. Guilarte ◽  
Christoph Hauser ◽  
...  

Resistance to antibiotics used againstNeisseria gonorrhoeaeinfections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences forN. gonorrhoeaeidentification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterizedN. gonorrhoeaestrains, 19 commensalNeisseriaspecies strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identifiedN. gonorrhoeaeand the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcalNeisseriaspecies, and the detection limit was 103to 104genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing.


2019 ◽  
Author(s):  
Sanaz Dehbashi ◽  
Hamed Tahmasebi ◽  
Mohammad Arabestani

Abstract Background: New Delhi metallo-β-lactamase (NDM-1) is a broad spectrum β-lactamase that is able to inactivate all β-lactams except aztreonam, as is typical of metallo-β-lactamases. NDM-1 producers in Pseudomonas aeruginosa, especially PASGNDM699 strain, cause a range of infections such as urinary tract, diarrhoea and soft tissue infections. The aim of this study was to Standardization of High-Resolution Melting Curve Analysis (HRM) assay for detection of P. aeruginosa, especially PASGNDM699 strain. Methods: The HRM method was done on standard strains of P. aeruginosa strains. 9-fold Serial dilutions of known DNA concentrations, extracted from standard isolates were prepared and tested by Real Time Melting curve and HRM assay. Data analysis was performed using the StepOne Software v2.3 and HRM Software v3.0.1 (Applied Biosystems, Ltd). Results: Based on the results of the Real Time PCR assay and melt curve analysis, melting point temperatures of the N-1, N-2 and N-3 amplicon for isolates identified as NDM strains were 87.57°C, 76.92°C and 82.97°C, respectively. Furthermore, melting point temperatures of the blaVIM, blaSPM and blaSIM amplicon for isolates identified as MBL strains were 84.56°C, 85.35°C and 86.62°C, respectively. Due to the analytical specificity of the primers, all dilutions with a similar Tm and melt peaks were obtained in the melting curves. Moreover, the analytical sensitivity of NDM primer were able to detected 100CFU/mL, 103CFU/mL and 104CFU/mL of standard DAN by N-1, N-2 and N-3 primers, respectively. Also, according to analytical sensitivity of MBL primers, blaVIM was able detected of 100CFU/mL, blaSPM primer 105CFU/mL and blaSIM primer 102CFU/mL of PASGNDM699 strain. HRM results showed that N-1 primers with 55 bp and blaVIM primers with 124 bp had the highest sensitivity and specificity for P. aeruginosa PASGNDM699 strain identification. Conclusion: The data from our study indicated that the sensitivity and specificity of the HRM method linked to the primer length and the fluorescent dye. Further, we can identify antibiotic resistance in substrates such as P. aeruginosa PASGNDM699 by software analysis and melting curve analysis.


2004 ◽  
Vol 50 (10) ◽  
pp. 1748-1754 ◽  
Author(s):  
Gudrun H Reed ◽  
Carl T Wittwer

Abstract Background: Screening for heterozygous sequence changes in PCR products, also known as “mutation scanning”, is an important tool for genetic research and clinical applications. Conventional methods require a separation step. Methods: We evaluated the sensitivity and specificity of homogeneous scanning, using a saturating DNA dye and high-resolution melting. Heterozygous single-nucleotide polymorphism (SNP) detection was studied in three different sequence backgrounds of 40%, 50%, and 60% GC content. PCR products of 50–1000 bp were generated in the presence of LCGreen™ I. After fluorescence normalization and temperature overlay, melting curve shape was used to judge the presence or absence of heterozygotes among 1632 cases. Results: For PCR products of 300 bp or less, all 280 heterozygous and 296 wild-type cases were correctly called without error. In 672 cases between 400 and 1000 bp with the mutation centered, the sensitivity and specificity were 96.1% and 99.4%, respectively. When the sequence background and product size with the greatest error rate were used, the sensitivity of off-center SNPs (384 cases) was 95.6% with a specificity of 99.4%. Most false negatives occurred with SNPs that were compared with an A or T wild type sequence. Conclusions: High-resolution melting analysis with the dye LCGreen I identifies heterozygous single-base changes in PCR products with a sensitivity and specificity comparable or superior to nonhomogeneous techniques. The error rate of scanning depends on the PCR product size and the type of base change, but not on the position of the SNP. The technique requires only PCR reagents, the dye LCGreen I, and 1–2 min of closed-tube, post-PCR analysis.


2009 ◽  
Vol 37 (2) ◽  
pp. 433-437 ◽  
Author(s):  
Claire F. Taylor

Mutation scanning techniques are used to detect sequence variants without the need for prior knowledge of the identity or precise location of the variant, in contrast with genotyping techniques, which determine the status of a specific variant. High-resolution melting is a recently developed method that shows great potential as a mutation scanning technique. Sensitivity and specificity for mutation detection are extremely high and the technique also has advantages of cost and throughput. Practical considerations for successful mutation scanning by high-resolution melting are also discussed in this review.


2009 ◽  
Vol 31 (3) ◽  
pp. 161-167
Author(s):  
D. Kramer ◽  
F. B. Thunnissen ◽  
M. I. Gallegos-Ruiz ◽  
E. F. Smit ◽  
P. E. Postmus ◽  
...  

Background: Increasing evidence points to a negative correlation between K-ras mutations and patient’s response to, or survival benefit after, treatment with EGFR-inhibitors. Therefore, rapid and reliable assays for mutational analysis of the K-ras gene are strongly needed.Methods: We designed a high resolution melting (HRM) technology-based approach followed by direct sequencing to determine K-ras exon 1 (codons 12/13) tumour genotype.Results: Reconstruction experiments demonstrated an analytical sensitivity of the K-ras exon 1 HRM assay following sequencing of 1.5–2.5% of mutated DNA in a background of wild-type DNA. Assay reproducibility and accuracy were 100%. Application of the HRM assay following sequencing onto genomic DNA isolated from formalin-fixed paraffin-embedded tumour specimens of non-small cell lung cancer (n=91) and colorectal cancer (n=7) patients revealed nucleotide substitutions at codons 12 or 13, including a homozygous mutation, in 33 (34%) and 5 (5%) cases, respectively. Comparison to conventional nested-PCR following cycle-sequencing showed an overall high agreement in genotype findings (kappa value of 0.96), with more mutations detected by the HRM assay following sequencing.Conclusion: HRM allows rapid, reliable and sensitive pre-screening of routine diagnostic specimens for subsequent genotyping of K-ras mutations, even if present at low abundance or homozygosity, and may considerably facilitate personalized therapy planning.


2010 ◽  
Vol 56 (11) ◽  
pp. 1750-1757 ◽  
Author(s):  
Ramunas Janavicius ◽  
Dovile Matiukaite ◽  
Arturas Jakubauskas ◽  
Laimonas Griskevicius

BACKGROUND Microsatellite instability (MSI) is an important marker for screening for hereditary nonpolyposis colorectal cancer (Lynch syndrome) as well as a prognostic and predictive marker for sporadic colorectal cancer (CRC). The mononucleotide microsatellite marker panel is a well-established and superior alternative to the traditional Bethesda MSI analysis panel, and does not require testing for corresponding normal DNA. The most common MSI detection techniques—fluorescent capillary electrophoresis and denaturing HPLC (DHPLC)—both have advantages and drawbacks. A new high-resolution melting (HRM) analysis method enables rapid identification of heteroduplexes in amplicons by their lower thermal stability, a technique that overcomes the main shortcomings of capillary electrophoresis and DHPLC. METHODS We investigated the straightforward application of HRM for the detection of MSI in 70 archival CRC samples. HRM analysis for 2 MSI markers (BAT25 and BAT26) was evaluated, and 2 different HRM-enabled instruments were compared—the LightCycler® 480 (Roche Diagnostics) and the LightScannerTM (Idaho Technology). We also determined the analytical sensitivity and specificity of the HRM assay on both instruments using 11 known MSI-positive and 54 microsatellite-stable CRC samples. RESULTS All MSI-positive samples were detected on both instruments (100% analytical sensitivity). The LightScanner performed better for analytical specificity, giving a combined specificity value of 99.1% compared with 92.3% on the LightCycler 480. CONCLUSIONS We expanded the application of the HRM analysis method as an effective MSI detection technique for clinical samples.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dalia F. Khater ◽  
Radwa A. Lela ◽  
Mohamed El-Diasty ◽  
Shawky A. Moustafa ◽  
Gamal Wareth

Abstract Objectives Microbes can contaminate foodstuffs resulting in foodborne illnesses. Investigating microbial hazards in foods at the point of sale with rapid tools is required to avoid foodborne illness outbreaks. The current study aimed to identify the microbial hazards in food samples collected from retail shops at sale points using MALDI-TOF MS. Results Food samples were collected from stores and supermarkets in four Delta cities (Tanta, Kutour, Kafr-Elzayat and Benha). Analysis of 178 samples of fish, meat and dairy products revealed 20 different bacterial species. 44.76% of isolates were identified as E. coli, 17.44% were identified as Enterobacter spp., and E. cloacae was predominant. 12.2% were identified as Citrobacter spp., and C. braakii was predominant, and 8.7% were identified as Klebsiella spp., and K. pneumoniae was predominant. Moreover, eight Proteus mirabilis, six Morganella morganii, five Staphylococcus hominis, three Serratia marcescens, two Pseudomonas aeruginosa, one Salmonella typhimurium and one Enterococcus faecalis were detected. Foodstuffs not only be contaminated during production and processing but also during storage and transport. Identification of harmful human pathogens in foodstuffs is alarming and consider threatening to public health. Identification of microbiological hazards in foods using MALDI-TOF MS provides an efficient tool for identifying foodborne pathogens.


Sign in / Sign up

Export Citation Format

Share Document