scholarly journals Cellular automaton decoders for topological quantum codes with noisy measurements and beyond

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Vasmer ◽  
Dan E. Browne ◽  
Aleksander Kubica

AbstractWe propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes. For simplicity, however, we focus on the three-dimensional toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold. We also numerically benchmark the performance of the decoder in the setting with measurement errors using various noise models. We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model. Our work constitutes a step towards finding simple and high-performance decoding strategies for a wide range of quantum low-density parity-check codes.

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Viacheslav Glinskikh ◽  
Oleg Nechaev ◽  
Igor Mikhaylov ◽  
Kirill Danilovskiy ◽  
Vladimir Olenchenko

This paper is dedicated to the topical problem of examining permafrost’s state and the processes of its geocryological changes by means of geophysical methods. To monitor the cryolithozone, we proposed and scientifically substantiated a new technique of pulsed electromagnetic cross-well sounding. Based on the vector finite-element method, we created a mathematical model of the cross-well sounding process with a pulsed source in a three-dimensional spatially heterogeneous medium. A high-performance parallel computing algorithm was developed and verified. Through realistic geoelectric models of permafrost with a talik under a highway, constructed following the results of electrotomography field data interpretation, we numerically simulated the pulsed sounding on the computing resources of the Siberian Supercomputer Center of SB RAS. The simulation results suggest the proposed system of pulsed electromagnetic cross-well monitoring to be characterized by a high sensitivity to the presence and dimensions of the talik. The devised approach can be oriented to addressing a wide range of issues related to monitoring permafrost rocks under civil and industrial facilities, buildings, and constructions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Erfan Rezvani Ghomi ◽  
Saeideh Kholghi Eshkalak ◽  
Sunpreet Singh ◽  
Amutha Chinnappan ◽  
Seeram Ramakrishna ◽  
...  

Purpose The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues. Design/methodology/approach Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK. Findings The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics. Originality/value The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.


2021 ◽  
Author(s):  
Daniel Pflieger ◽  
Miguel de la Varga Hormazabal ◽  
Simon Virgo ◽  
Jan von Harten ◽  
Florian Wellmann

<p>Three dimensional modeling is a rapidly developing field in geological scientific and commercial applications. The combination of modeling and uncertainty analysis aides in understanding and quantitatively assessing complex subsurface structures. In recent years, many methods have been developed to facilitate this combined analysis, usually either through an extension of existing desktop applications or by making use of Jupyter notebooks as frontends. We evaluate here if modern web browser technology, linked to high-performance cloud services, can also be used for these types of analyses.</p><p>For this purpose, we developed a web application as proof-of-concept with the aim to visualize three dimensional geological models provided by a server. The implementation enables the modification of input parameters with assigned probability distributions. This step enables the generation of randomized realizations of models and the quantification and visualization of propagated uncertainties. The software is implemented using HTML Web Components on the client side and a Python server, providing a RESTful API to the open source geological modeling tool “GemPy”. Encapsulating the main components in custom elements, in combination with a minimalistic state management approach and a template parser, allows for high modularity. This enables rapid extendibility of the functionality of the components depending on the user’s needs and an easy integration into existing web platforms.</p><p>Our implementation shows that it is possible to extend and simplify modeling processes by creating an expandable web-based platform for probabilistic modeling, with the aim to increase the usability and to facilitate access to this functionality for a wide range of scientific analyses. The ability to compute models rapidly and with any given device in a web browser makes it flexible to use, and more accessible to a broader range of users.</p>


2005 ◽  
Vol 867 ◽  
Author(s):  
J. J. McMahon ◽  
F. Niklaus ◽  
R. J. Kumar ◽  
J. Yu ◽  
J.Q. Lu ◽  
...  

AbstractWafer-level three dimensional (3D) IC technology offers the promise of decreasing RC delays by reducing long interconnect lines in high performance ICs. This paper focuses on a viafirst 3D IC platform, which utilizes a back-end-of-line (BEOL) compatible damascene-patterned layer of copper and Benzocyclobutene (BCB). This damascene-patterned copper/BCB serves as a redistribution layer between two fully fabricated wafer sets of ICs and offers the potential of high bonding strength and low contact resistance for inter-wafer interconnects between the wafer pair. The process would thus combine the electrical advantages of 3D technology using Cu-to-Cu bonding with the mechanical advantages of 3D technology using BCB-to-BCB bonding.In this work, partially cured BCB has been evaluated for copper damascene patterning using commercially available CMP slurries as a key process step for a via-first 3D process flow. BCB is spin-cast on 200 mm wafers and cured at temperatures ranging from 190°C to 250°C, providing a wide range of crosslink percentage. These films are evaluated for CMP removal rate, surface damage (surface scratching and embedded abrasives), and planarity with commercially available copper CMP slurries. Under baseline process parameters, erosion, and roughness changes are presented for single-level damascene test patterns. After wafers are bonded under controlled temperature and pressure, the bonding interface is inspected optically using glass-to-silicon bonded wafers, and the bond strength is evaluated by a razor blade test.


2018 ◽  
Vol 18 (9&10) ◽  
pp. 743-778
Author(s):  
Muhammad Ahsan ◽  
Syed Abbas Zilqurnain Naqvi

We investigate the efficacy of topological quantum error-correction in correlated noise model which permits collective coupling of all the codeword qubits to the same non-Markovian environment. In this noise model, the probability distribution over set of phase-flipped qubits, decays sub-exponentially in the size of the set and carries non-trivial likelihood of the occurring large numbers of qubits errors. We find that in the presence of noise correlation, one cannot guarantee arbitrary high computational accuracy simply by incrementing the codeword size while retaining constant noise level per qubit operation. However, if instead, per-operation qubit error probability in an n-qubits long codeword is reduced O(\sqrt{n}) times below the accuracy threshold, arbitrarily accurate quantum computation becomes feasible with acceptable scaling of the codeword size. Our results suggest that progressively reducing noise level in qubits and gates is as important as continuously integrating more qubits to realize scalable and reliable quantum computer.


2021 ◽  
Vol 21 (10) ◽  
pp. 5319-5328
Author(s):  
Sha-Sha Luo ◽  
Yu-Meng Ma ◽  
Peng-Wei Li ◽  
Ming-Hua Tian ◽  
Qiao-Xia Li

Transition metal and nitrogen co-doped carbon-based catalysts (TM-N-C) have become the most promising catalysts for Pt/C due to their wide range of sources, low cost, high catalytic activity, excellent stability and strong resistance to poisoning, especially Fe–N–C metal-organic frameworks (MOFs), which are some of the most promising precursors for the preparation of Fe–N–C catalysts due to their inherent properties, such as their highly ordered three-dimensional framework structure, controlled porosity, and tuneable chemistry. Based on these, in this paper, different iron sources were added to synthesis a sort of zeolitic imidazole frameworks (ZIF-8). Then the imidazole salt in ZIF-8 was rearranged into high N-doped carbon by high-temperature pyrolysis to prepare the Fe–N–C catalyst. We studied the physical characteristics of the catalysts by different iron sources and their effects on the catalytic properties of the oxygen reduction reaction (ORR). From the point of morphology, various iron sources have a positive influence on maintaining the morphology of ZIF-8 polyhedron. Fe–N/C–Fe(NO3)3 has the same anion as zinc nitrate, and can maintain a polyhedral morphology after high-temperature calcination. It had the highest ORR catalytic activity compared to the other four catalyst materials, which proved that there is a certain relationship between morphology and performance. This paper will provide a useful reference and new models for the development of high-performance ORR catalysts without precious metals.


2015 ◽  
Vol 112 (25) ◽  
pp. 7639-7644 ◽  
Author(s):  
Jayson Paulose ◽  
Anne S. Meeussen ◽  
Vincenzo Vitelli

States of self-stress—tensions and compressions of structural elements that result in zero net forces—play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (8) ◽  
pp. 569-576 ◽  
Author(s):  
Yi Ding ◽  
Mingwei Chen

AbstractNanoporous metals (NPMs) made by dealloying represent a class of functional materials with the unique structural properties of mechanical rigidity, electrical conductivity, and high corrosion resistance. They also possess a porous network structure with feature dimensions tunable within a wide range from a few nanometers to several microns. Coupled with a rich surface chemistry for further functionalization, NPMs have great potential for applications in heterogeneous catalysis, electrocatalysis, fuel cell technologies, biomolecular sensing, surface-enhanced Raman scattering (SERS), and plasmonics. This article summarizes recent advances in some of these areas and, in particular, we focus on the discussion of microstructure, catalytic, and optical properties of nanoporous gold (NPG). With advanced electron microscopy, three-dimensional tomographic reconstructions of NPG have been realized that yield quantitative characterizations of key morphological parameters involved in the intricate structure. Catalytic and electrocatalytic investigations demonstrate that bare NPG is already catalytically active for many important reactions such as CO and glucose oxidation. Surface functionalization with other metals, such as Pt, produces very efficient electrocatalysts, which have been used as promising fuel cell electrode materials with very low precious metal loading. Additionally, NPG and related materials possess outstanding optical properties in plasmonics and SERS. They hold promise to act as highly active, stable, and economically affordable substrates in high-performance instrumentation applications for chemical inspection and biomolecular diagnostics. Finally, we conclude with some perspectives that appear to warrant future investigation.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolai Lang ◽  
Hans Peter Büchler

Active quantum error correction on topological codes is one of the most promising routes to long-term qubit storage. In view of future applications, the scalability of the used decoding algorithms in physical implementations is crucial. In this work, we focus on the one-dimensional Majorana chain and construct a strictly local decoder based on a self-dual cellular automaton. We study numerically and analytically its performance and exploit these results to contrive a scalable decoder with exponentially growing decoherence times in the presence of noise. Our results pave the way for scalable and modular designs of actively corrected one-dimensional topological quantum memories.


Author(s):  
S. V. Zaytsev

When switching to 3D inversion of MT data, the requirement for computer technology is significantly increased. In this paper we will discuss a few examples of 3D inversion of electromagnetic geophysical field data with the usage of “Lomonosov” supercomputer and show its effectiveness on several geological objects. Each object is associated with a variety of problems: from search for shallow ore to regional hydrocarbon exploration. But all these objects contain a large volume of measurements obtaining qualitative results for which requires a huge amount of time. So that the use of 3D inversion with a high-performance computational complex makes it possible to obtain a qualitative result of solving a wide range of problems.


Sign in / Sign up

Export Citation Format

Share Document