scholarly journals Colloidal stability of phytosynthesised gold nanoparticles and their catalytic effects for nerve agent degradation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Veronika Holišová ◽  
Martin Urban ◽  
Zuzana Konvičková ◽  
Marek Kolenčík ◽  
Pavel Mančík ◽  
...  

AbstractHerein, Tilia sp. bract leachate was used as the reducing agent for Au nanoparticles (Au NPs) phytosynthesis. The colloidal properties of the prepared Au NPs were determined to confirm their stability over time, and the NPs were then used as active catalysts in soman nerve agent degradation. The Au NPs characterisation, reproducibility and stability studies were performed under transmission electron microscopy, ultraviolet visible spectroscopy and with ζ-potential measurements. The reaction kinetics was detected by gas chromatography coupled with mass spectrometry detector and solid-phase micro-extraction to confirm the Au NPs applicability in soman hydrolysis. The ‘green’ phytosynthetic formation of colloidal crystalline Au NPs with dominant quasi-spherical shape and 55 ± 10 nm diameter was successfully achieved, and there were no significant differences in morphology, ζ-potential or absorbance values observed during the 5-week period. This verified the prepared colloids’ long-term stability. The soman nerve agent was degraded to non-toxic substances within 24 h, with 0.2156 h−1 reaction rate constant. These results confirmed bio-nanotechnology’s great potential in preparation of stable and functional nanocatalysts for degradation of hazardous substances, including chemical warfare agents.

2020 ◽  
Vol 5 (1) ◽  
pp. 761-767
Author(s):  
Reiyhaneh Abbasian ◽  
Hoda Jafarizadeh-Malmiri

AbstractGreen fabrication of metal nanoparticles (NPs), using natural reducing and stabilizing agents existed in plants and their derivatives, due to their unique properties, has gained more attention. The present study focuses on the synthesis of gold (Au), silver (Ag) and selenium (Se) NPs using coffee bean extract under hydrothermal conditions (1.5 atm and 121°C, for 15 min). Coffee bean extract obtained in 2 h processing using Clevenger apparatus and Fourier transform-infrared (FT-IR) spectroscopy indicated five highlighted peaks, namely, hydroxyl, amide, aromatic, alkane and ring groups. Dynamic light scattering analysis revealed that among three different NPs formed, fabricated Ag NPs had small particle size (153 nm) and high zeta potential value (16.8 mV). However, synthesized Au NPs had minimum polydispersity index (0.312). Results also indicated that fabricated Au, Se and Ag NPs had low antioxidant activity with values of 9.1, 8.9 and 8.7%, respectively. Morphological and antibacterial activity assessments, demonstrated that synthesized Ag, Au and Se NPs had spherical shape and high bactericidal activity against E. coli and S. aurous. Obtained results indicated that the synthesized NPs, can be utilized in various areas.


2008 ◽  
Vol 2 (2) ◽  
pp. 104-113 ◽  
Author(s):  
D. Kevin Horton ◽  
Maureen Orr ◽  
Theodora Tsongas ◽  
Richard Leiker ◽  
Vikas Kapil

ABSTRACTBackground: When not managed properly, a hazardous material event can quickly extend beyond the boundaries of the initial release, creating the potential for secondary contamination of medical personnel, equipment, and facilities. Secondary contamination generally occurs when primary victims are not decontaminated or are inadequately decontaminated before receiving medical attention. This article examines the secondary contamination events reported to the Agency for Toxic Substances and Disease Registry (ATSDR) and offers suggestions for preventing such events.Methods: Data from the ATSDR Hazardous Substances Emergency Events Surveillance system were used to conduct a retrospective analysis of hazardous material events occurring in 17 states during 2003 through 2006 involving secondary contamination of medical personnel, equipment, and facilities.Results: Fifteen (0.05%) Hazardous Substances Emergency Events Surveillance events were identified in which secondary contamination occurred. At least 17 medical personnel were injured as a result of secondary contamination while they were treating contaminated victims. Of the medical personnel injured, 12 were emergency medical technicians and 5 were hospital personnel. Respiratory irritation was the most common injury sustained.Conclusions: Adequate preplanning and drills, proper decontamination procedures, good field-to-hospital communication, appropriate use of personal protective equipment, and effective training can help prevent injuries of medical personnel and contamination of transport vehicles and medical facilities. (Disaster Med Public Health Preparedness. 2008;2:104–113)


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1860
Author(s):  
Jiří Zeman ◽  
Sylvie Pavloková ◽  
David Vetchý ◽  
Adam Staňo ◽  
Zdeněk Moravec ◽  
...  

Pharmaceutical technology offers various dosage forms that can be applied interdisciplinary. One of them are spherical pellets which could be utilized as a carrier in emerging second-generation detection tubes. This detection system requires carriers with high specific surface area (SSA), which should allow better adsorption of toxic substances and detection reagents. In this study, a magnesium aluminometasilicate with high SSA was utilized along with various concentrations of volatile substances (menthol, camphor and ammonium bicarbonate) to increase further the carrier SSA after their sublimation. The samples were evaluated in terms of physicochemical parameters, their morphology was assessed by scanning electron microscopy, and the Brunauer–Emmett–Teller (BET) method was utilized to measure SSA. The samples were then impregnated with a detection reagent o-phenylenediamine-pyronine and tested with diphosgene. Only samples prepared using menthol or camphor were found to show red fluorescence under the UV light in addition to the eye-visible red-violet color. This allowed the detection of diphosgene/phosgene at a concentration of only 0.1 mg/m3 in the air for samples M20.0 and C20.0 with their SSA higher than 115 m2/g, thus exceeding the sensitivity of the first-generation DT-12 detection tube.


2010 ◽  
Vol 93 (6) ◽  
pp. 1692-1702 ◽  
Author(s):  
José L Tadeo ◽  
Consuelo Sánchez-Brunete ◽  
Beatriz Albero ◽  
Ana I Garcí-Valcárcel

Abstract Pesticides are widely applied to protect plants from diseases, weeds, and insect damage, and they usually come into contact with soil where they may undergo a variety of transformations and provide a complex pattern of metabolites. Spreading sewage sludge on agricultural lands has been actively promoted by national authorities as an economic way of recycling. However, as a byproduct of wastewater treatment, sewage sludge may contain pesticides and other toxic substances that could be incorporated into agricultural products or be distributed in the environment. This article reviews the determination of pesticides in sewage sludge samples. Sample preparation including pretreatment, extraction, and cleanup, as well as the subsequent instrumental determination of pesticide residues, are discussed. Extraction techniques such as Soxhlet extraction, ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, and matrix solid-phase dispersion and their most recent applications to the determination of pesticides in sewage sludge samples are reviewed. Determination of pesticides, generally carried out by GC and HPLC coupled with different detectors, especially MS for the identification and quantification of residues, is summarized and discussed.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3985
Author(s):  
Jae Young Lee ◽  
Sajid Mushtaq ◽  
Jung Eun Park ◽  
Hee Soon Shin ◽  
So-Young Lee ◽  
...  

Concern about environmental exposure to hazardous substances has grown over the past several decades, because these substances have adverse effects on human health. Methods used to monitor the biological uptake of hazardous substances and their spatiotemporal behavior in vivo must be accurate and reliable. Recent advances in radiolabeling chemistry and radioanalytical methodologies have facilitated the quantitative analysis of toxic substances, and whole-body imaging can be achieved using nuclear imaging instruments. Herein, we review recent literature on the radioanalytical methods used to study the biological distribution, changes in the uptake and accumulation of hazardous substances, including industrial chemicals, nanomaterials, and microorganisms. We begin with an overview of the radioisotopes used to prepare radiotracers for in vivo experiments. We then summarize the results of molecular imaging studies involving radiolabeled toxins and their quantitative assessment. We conclude the review with perspectives on the use of radioanalytical methods for future environmental research.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 94 ◽  
Author(s):  
Laura Corredor ◽  
Maen Husein ◽  
Brij Maini

Recent studies revealed higher polymer flooding performance upon adding metal oxide nanoparticles (NPs) to acrylamide-based polymers during heavy oil recovery. The current study considers the effect of TiO2, Al2O3, in-situ prepared Fe(OH)3 and surface-modified SiO2 NPs on the performance of xanthan gum (XG) solutions to enhance heavy oil recovery. Surface modification of the SiO2 NPs was achieved by chemical grafting with 3-(methacryloyloxy)propyl]trimethoxysilane (MPS) and octyltriethoxysilane (OTES). The nanopolymer sols were characterized by their rheological properties and ζ-potential measurements. The efficiency of the nanopolymer sols in displacing oil was assessed using a linear sand-pack at 25 °C and two salinities (0.3 wt % and 1.0 wt % NaCl). The ζ-potential measurements showed that the NP dispersions in deionized (DI) water are unstable, but their colloidal stability improved in presence of XG. The addition of unmodified and modified SiO2 NPs increased the viscosity of the XG solution at all salinities. However, the high XG adsorption onto the surface of Fe(OH)3, Al2O3, and TiO2 NPs reduced the viscosity of the XG solution. Also, the NPs increased the cumulative oil recovery between 3% and 9%, and between 1% and 5% at 0 wt % and 0.3 wt % NaCl, respectively. At 1.0 wt % NaCl, the NPs reduced oil recovery by XG solution between 5% and 12%, except for Fe(OH)3 and TiO2 NPs. These NPs increased the oil recovery between 2% and 3% by virtue of reduced polymer adsorption caused by the alkalinity of the Fe(OH)3 and TiO2 nanopolymer sols.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 540 ◽  
Author(s):  
Črt Dragar ◽  
Tanja Potrč ◽  
Sebastjan Nemec ◽  
Robert Roškar ◽  
Stane Pajk ◽  
...  

The development of various magnetically-responsive nanostructures is of great importance in biomedicine. The controlled assembly of many small superparamagnetic nanocrystals into large multi-core clusters is needed for effective magnetic drug delivery. Here, we present a novel one-pot method for the preparation of multi-core clusters for drug delivery (i.e., magnetic nanocarriers). The method is based on hot homogenization of a hydrophobic phase containing a nonpolar surfactant into an aqueous phase, using ultrasonication. The solvent-free hydrophobic phase that contained tetradecan-1-ol, γ-Fe2O3 nanocrystals, orlistat, and surfactant was dispersed into a warm aqueous surfactant solution, with the formation of small droplets. Then, a pre-cooled aqueous phase was added for rapid cooling and the formation of solid magnetic nanocarriers. Two different nonpolar surfactants, polyethylene glycol dodecyl ether (B4) and our own N1,N1-dimethyl-N2-(tricosan-12-yl)ethane-1,2-diamine (SP11), were investigated for the preparation of MC-B4 and MC-SP11 magnetic nanocarriers, respectively. The nanocarriers formed were of spherical shape, with mean hydrodynamic sizes <160 nm, good colloidal stability, and high drug loading (7.65 wt.%). The MC-B4 nanocarriers showed prolonged drug release, while no drug release was seen for the MC-SP11 nanocarriers over the same time frame. Thus, the selection of a nonpolar surfactant for preparation of magnetic nanocarriers is crucial to enable drug release from nanocarrier.


2018 ◽  
Vol 33 (1) ◽  
pp. 158-163
Author(s):  
Marcin Joachim Grzegorczyk ◽  
Katarzyna Galer – Tatarowicz

A description of equipment and tools relative to the sampling of seabed sediments for physicochemical analyses is presented in accordance with the Polish Standard PN-EN ISO 5667-19:2006. The paper reports sampling procedures for various purposes, instructions regarding samples handling, with emphasis on hazardous substances, chemical warfare agents (BST). It also includes information and instructions concerning high level of safety while working at sea, in accordance with international conventions SCTW and SOLAS.


Sign in / Sign up

Export Citation Format

Share Document