scholarly journals Aptamer-targeting of Aleutian mink disease virus (AMDV) can be an effective strategy to inhibit virus replication

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taofeng Lu ◽  
Hui Zhang ◽  
Jie Zhou ◽  
Qin Ma ◽  
Wenzhuo Yan ◽  
...  

AbstractAleutian mink disease (AMD), which is caused by Aleutian mink disease virus (AMDV), is an important contagious disease for which no effective vaccine is yet available. AMD causes major economic losses for mink farmers globally and threatens some carnivores such as skunks, genets, foxes and raccoons. Aptamers have exciting potential for the diagnosis and/or treatment of infectious viral diseases, including AMD. Using a magnetic beads-based systemic evolution of ligands by exponential enrichment (SELEX) approach, we have developed aptamers with activity against AMDV after 10 rounds of selection. After incubation with the ADVa012 aptamer (4 μM) for 48 h, the concentration of AMDV in the supernatant of infected cells was 47% lower than in the supernatant of untreated cells, whereas a random library of aptamers has no effect. The half-life of ADVa012 was ~ 32 h, which is significantly longer than that of other aptamers. Sequences and three dimensions structural modeling of selected aptamers indicated that they fold into similar stem-loop structures, which may be a preferred structure for binding to the target protein. The ADVa012 aptamer was shown to have an effective and long-lasting inhibitory effect on viral production in vitro.

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Peng-Fei Fu ◽  
Xuan Cheng ◽  
Bing-Qian Su ◽  
Li-Fang Duan ◽  
Cong-Rong Wang ◽  
...  

AbstractPseudorabies, caused by pseudorabies virus (PRV) variants, has broken out among commercial PRV vaccine-immunized swine herds and resulted in major economic losses to the pig industry in China since late 2011. However, the mechanism of virulence enhancement of variant PRV is currently unclear. Here, a recombinant PRV (rPRV HN1201-EGFP-Luc) with stable expression of enhanced green fluorescent protein (EGFP) and firefly luciferase as a double reporter virus was constructed on the basis of the PRV variant HN1201 through CRISPR/Cas9 gene-editing technology coupled with two sgRNAs. The biological characteristics of the recombinant virus and its lethality to mice were similar to those of the parental strain and displayed a stable viral titre and luciferase activity through 20 passages. Moreover, bioluminescence signals were detected in mice at 12 h after rPRV HN1201-EGFP-Luc infection. Using the double reporter PRV, we also found that 25-hydroxycholesterol had a significant inhibitory effect on PRV both in vivo and in vitro. These results suggested that the double reporter PRV based on PRV variant HN1201 should be an excellent tool for basic virology studies and evaluating antiviral agents.


Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 399
Author(s):  
Hiroyuki Morimura ◽  
Michihiro Ito ◽  
Shigenobu Yoshida ◽  
Motoo Koitabashi ◽  
Seiya Tsushima ◽  
...  

Fusarium head blight (FHB) of cereals is a severe disease caused by the Fusarium graminearum species complex. It leads to the accumulation of the mycotoxin deoxynivalenol (DON) in grains and other plant tissues and causes substantial economic losses throughout the world. DON is one of the most troublesome mycotoxins because it is a virulence factor to host plants, including wheat, and exhibits toxicity to plants and animals. To control both FHB and DON accumulation, a biological control approach using DON-degrading bacteria (DDBs) is promising. Here, we performed a disease control assay using an in vitro petri dish test composed of germinated wheat seeds inoculated with F. graminearum (Fg) and DDBs. Determination of both grown leaf lengths and hyphal lesion lengths as a measure of disease severity showed that the inoculation of seeds with the DDBs Devosia sp. strain NKJ1 and Nocardioides spp. strains SS3 or SS4 were protective against the leaf growth inhibition caused by Fg. Furthermore, it was as effective against DON accumulation. The inoculation with strains SS3 or SS4 also reduced the inhibitory effect on leaves treated with 10 µg mL−1 DON solution (without Fg). These results indicate that the DDBs partially suppress the disease by degrading DON.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shunli Yang ◽  
Li Yuan ◽  
Youjun Shang ◽  
Jinyan Wu ◽  
Xiangtao Liu ◽  
...  

Outbreak of classical swine fever (CSF) results in high mortality and thus causes severe economic losses in the swine industry. Single-domain antibody (sdAb) is the smallest antigen-binding molecule derived from camelid heavy-chain antibodies and has the potential to be used as a molecular probe for detection of CSF virus (CSFV). In this study, two sdAb fragments against the E2 antigen of CSFV were obtained, expressed in vitro. The functional characteristics analysis indicated that the recombinant sdAbE2-1 and sdAbE2-2 have excellent binding activity, specificity, and high affinity with equilibrium constant value of 3.34 × 10−7 and 1.35 × 10−8 M to E2 protein. Then, sdAbE2s were conjugated with quantum dots (QD)/AF488 to synthesize two molecular probes for imaging CSFV distribution in cells. The sdAbE2-1 was also labeled with carboxyl-magnetic beads to construct immunomagnetic nanobeads (IMNBs) able to capture CSFV virions and recombinant E2 protein. QD/AF455-sdAbE2s probes colocalised with CSFV virions in swine testis cells, and IMNBs were used as a detection template and proved to bind specifically with CSFV virions and E2 protein. The selected sdAb fragments and sdAb-based molecular probes may be used for the rapid identification of CSFV during field outbreaks and for research on CSFV and host interactions.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4823 ◽  
Author(s):  
Guoqiang Wang ◽  
Yunchao Liu ◽  
Hua Feng ◽  
Yumei Chen ◽  
Suzhen Yang ◽  
...  

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that has caused tremendous economic losses worldwide. In this study, we designed a chimeric nanoparticles (CNPs) vaccine that displays the predominant epitope of the serotype O foot-and-mouth disease virus (FMDV) VP1 131-160 on the surface of MS2 phage. The recombinant protein was expressed inEscherichia Coliand can self-assemble into CNPs with diameter at 25–30 nmin vitro. A tandem repeat peptide epitopes (TRE) was prepared as control. Mice were immunized with CNPs, TRE and commercialized synthetic peptide vaccines (PepVac), respectively. The ELISA results showed that CNPs stimulated a little higher specific antibody levels to PepVac, but was significantly higher than the TRE groups. Moreover, the results from specific IFN-γ responses and lymphocyte proliferation test indicated that CNP immunized mice exhibited significantly enhanced cellular immune response compared to TRE. These results suggested that the CNPs constructed in current study could be a potential alternative vaccine in future FMDV control.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Do Quang Trung ◽  
Luu The Anh ◽  
Nguyen Thi Thuy ◽  
Dinh Mai Van ◽  
Tran Thi Hang

Abstract Background Stem end rot (SER) disease caused by Alternaria alternata is one of the main fungal diseases in pitaya and other crops in Nam Dinh, Vietnam, that leads to extensive yield and economic losses. Biocontrol of SER, using endophytic bacteria, is environmentally friendly and compatible with other control measures. Hence, it is emerging as an alternative disease management strategy in sustainable agriculture. This study aimed to screen antagonistic bacteria isolated from the weed, Eleusine indica, with the potential to manage SER. Results A total of 16 endophytes were isolated from the stems, leaves, and roots of the weed, E. indica. Of those, 6 strains presented antagonistic effects against A. alternata growth, and one isolate, EI-15, showed a significant inhibitory effect on SER. In addition, analyzing the 16S rDNA sequence indicated that EI-15 was a strain of Bacillus amyloliquefaciens. Moreover, the results of the antagonistic spectrum assay showed that EI-15 significantly inhibited some plant and fruit tree pathogens, especially the suppression of A. alternata. Notably, the culture filtrate of strain EI-15 exhibited in vitro apparent activity against A. alternata. Furthermore, an in vivo antagonistic experiment of EI-15 on pitaya twig showed a significant reduction of lesion on twigs than the control. Conclusions Overall, this study suggested the potential application of the EI-15 strain as a biological agent and needs to be further studied in the field to control SER.


2021 ◽  
Author(s):  
Fei Liu ◽  
Amy C.H Lee ◽  
Fang Guo ◽  
Andrew S. Kondratowicz ◽  
Holly M Micolochick Steuer ◽  
...  

Noncanonical poly(A) polymerases PAPD5 and PAPD7 (PAPD5/7) stabilize HBV RNA via the interaction with the viral post-transcriptional regulatory element (PRE), representing new antiviral targets to control HBV RNA metabolism, HBsAg production and viral replication. Inhibitors targeting these proteins are being developed as antiviral therapies, therefore it is important to understand how PAPD5/7 coordinate to stabilize HBV RNA. Here, we utilized a potent small-molecule AB-452 as a chemical probe, along with genetic analyses to dissect the individual roles of PAPD5/7 in HBV RNA stability. AB-452 inhibits PAPD5/7 enzymatic activities and reduces HBsAg both in vitro (EC50 ranged from 1.4 to 6.8 nM) and in vivo by 0.93 log10. Our genetic studies demonstrate that the stem-loop alpha sequence within PRE is essential for both maintaining HBV poly(A) tail integrity and determining sensitivity towards the inhibitory effect of AB-452. Although neither single knock-out (KO) of PAPD5 nor PAPD7 reduces HBsAg RNA and protein production, PAPD5 KO does impair poly(A) tail integrity and confers partial resistance to AB-452. In contrast, PAPD7 KO could not result in any measurable phenotypic changes, but displays a similar antiviral effect as AB-452 treatment when PAPD5 is depleted simultaneously. PAPD5/7 double KO confers complete resistance to AB-452 treatment. Our results thus indicate that PAPD5 plays a dominant role in stabilizing viral RNA by protecting the integrity of its poly(A) tail, while PAPD7 serves as a second line of protection. These findings inform PAPD5 targeted therapeutic strategies and open avenues for further investigating PAPD5/7 in HBV replication.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 962 ◽  
Author(s):  
Panrao Liu ◽  
Yuncong Yin ◽  
Yabin Gong ◽  
Xusheng Qiu ◽  
Yingjie Sun ◽  
...  

Newcastle disease (ND) is an acute, febrile, highly contagious disease caused by the virulent Newcastle disease virus (vNDV). The disease causes serious economic losses to the poultry industry. However, the metabolic changes caused by vNDV infection remain unclear. The objective of this study was to determine the metabolomic profiling after infection with vNDV. DF-1 cells infected with the vNDV strain Herts/33 and the lungs from Herts/33-infected specific pathogen-free (SPF) chickens were analyzed via ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 305 metabolites were found to have changed significantly after Herts/33 infection, and most of them belong to the amino acid and nucleotide metabolic pathway. It is suggested that the increased pools of amino acids and nucleotides may benefit viral protein synthesis and genome amplification to promote NDV infection. Similar results were also confirmed in vivo. Identification of these metabolites will provide information to further understand the mechanism of vNDV replication and pathogenesis.


1996 ◽  
Vol 51 (7-8) ◽  
pp. 558-562 ◽  
Author(s):  
Angel S. Galabov ◽  
Tanya Iosifova ◽  
Elka Vassileva ◽  
Ivanka Kostova

Abstract Esculetin (6,7-dihydroxycoumarin) and its diacetate exhibited a marked inhibitory effect on Newcastle disease virus replication in cell cultures at concentrations of 36 jam and 62 jam, respectively. These compounds were selected from ten hydroxycoumarin derivatives through an in vitro antiviral screen involving viruses of the picorna-, orthomyxo-, paramyxo-, and herpes virus families.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giovanni Franzo ◽  
Matteo Legnardi ◽  
Laura Grassi ◽  
Giorgia Dotto ◽  
Michele Drigo ◽  
...  

AbstractAleutian mink disease virus (AMDV) is one the most relevant pathogens of domestic mink, where it can cause significant economic losses, and wild species, which are considered a threat to mink farms. Despite their relevance, many aspects of the origin, evolution, and geographic and host spreading patterns of AMDV have never been investigated on a global scale using a comprehensive biostatistical approach. The present study, benefitting from a large dataset of sequences collected worldwide and several phylodynamic-based approaches, demonstrates the ancient origin of AMDV and its broad, unconstrained circulation from the initial intercontinental spread to the massive among-country circulation, especially within Europe, combined with local persistence and evolution. Clear expansion of the viral population size occurred over time until more effective control measures started to be applied. The role of frequent changes in epidemiological niches, including different hosts, in driving the high nucleotide and amino acid evolutionary rates was also explored by comparing the strengths of selective pressures acting on different populations. The obtained results suggest that the viral passage among locations and between wild and domesticated animals poses a double threat to farm profitability and animal welfare and health, which is particularly relevant for endangered species. Therefore, further efforts must be made to limit viral circulation and to refine our knowledge of factors enhancing AMDV spread, particularly at the wild-domestic interface.


2009 ◽  
Vol 84 (6) ◽  
pp. 2687-2696 ◽  
Author(s):  
Fang Cheng ◽  
Aaron Yun Chen ◽  
Sonja M. Best ◽  
Marshall E. Bloom ◽  
David Pintel ◽  
...  

ABSTRACT Aleutian mink disease virus (AMDV) is currently the only known member of the genus Amdovirus in the family Parvoviridae. It is the etiological agent of Aleutian disease of mink. We have previously shown that a small protein with a molecular mass of approximately 26 kDa was present during AMDV infection and following transfection of capsid expression constructs (J. Qiu, F. Cheng, L. R. Burger, and D. Pintel, J. Virol. 80:654-662, 2006). In this study, we report that the capsid proteins were specifically cleaved at aspartic acid residue 420 (D420) during virus infection, resulting in the previously observed cleavage product. Mutation of a single amino acid residue at D420 abolished the specific cleavage. Expression of the capsid proteins alone in Crandell feline kidney (CrFK) cells reproduced the cleavage of the capsid proteins in virus infection. More importantly, capsid protein expression alone induced active caspases, of which caspase-10 was the most active. Active caspases, in turn, cleaved capsid proteins in vivo. Our results also showed that active caspase-7 specifically cleaved capsid proteins at D420 in vitro. These results suggest that viral capsid proteins alone induce caspase activation, resulting in cleavage of capsid proteins. We also provide evidence that AMDV mutants resistant to caspase-mediated capsid cleavage increased virus production approximately 3- to 5-fold in CrFK cells compared to that produced from the parent virus AMDV-G at 37°C but not at 31.8°C. Collectively, our results indicate that caspase activity plays multiple roles in AMDV infection and that cleavage of the capsid proteins might have a role in regulating persistent infection of AMDV.


Sign in / Sign up

Export Citation Format

Share Document