scholarly journals Crosses with spelt improve tolerance of South Asian spring wheat to spot blotch, terminal heat stress, and their combination

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajeet Kumar Pandey ◽  
Vinod Kumar Mishra ◽  
Ramesh Chand ◽  
Sudhir Navathe ◽  
Neeraj Budhlakoti ◽  
...  

AbstractSpot blotch and terminal heat are two of the most important stresses for wheat in South Asia. A study was initiated to explore the use of spelt (Triticum spelta) to improve tolerance to these stresses in spring wheat (T. aestivum). We assessed 185 recombinant inbred lines (RILs) from the cross T. spelta (H + 26) × T. aestivum (cv. HUW234), under the individual stresses and their combination. H + 26 showed better tolerance to the single stresses and also their combination; grain yield in RILs was reduced by 21.9%, 27.7% and 39.0% under spot blotch, terminal heat and their combined effect, respectively. However, phenological and plant architectural traits were not affected by spot blotch itself. Multivariate analysis demonstrated a strong negative correlation between spikelet sterility and grain yield under spot blotch, terminal heat and their combination. However, four recombinant lines demonstrated high performance under both stresses and also under their combined stress. The four lines were significantly superior in grain yield and showed significantly lower AUDPC than the better parent. This study demonstrates the potential of spelt wheat in enhancing tolerance to spot blotch and terminal heat stresses. It also provides comprehensive evidence about the expression of yield and phenological traits under these stresses.

Author(s):  
UR Rosyara ◽  
RC Sharma ◽  
SM Shrestha ◽  
E Duveiller

Breeding for resistance to Helminthosporium leaf blight (HLB) caused by a complex of spot blotch (Cochliobolus sativus) and tan spot (Pyerenophora tritici-repentis Died) of wheat (Triticum aestivum L.) is difficult due to complex nature of resistance, and high influence of environment. This study was conducted to examine whether genotypes having variation in level of resistance and tolerance differ in compensation to loss of leaves. Five spring wheat genotypes with different levels of resistance and tolerance to HLB were grown under irrigated field conditions in randomized complete block design during 2001-2002 and 2002- 2003 wheat-growing season at Rampur, Chitwan, Nepal. Defoliation treatments consist of removal of flag (F), penultimate (F-1), and both F and F-1 leaves were done one day after anthesis. Results showed that defoliation had significant effects on grain yield, biomass yield, thousand-kernel weight (TKW) but not on harvest index, number of grains per spike, kernel per spikelet, and spikelets per spike. All genotypes included in this study showed some degree of compensation for loss of F, F-1, and both F and F-1 leaves, which was found to be variable between years. Removal of flag leaf was compensated by the resistant genotype NL750 for both grain yield and TKW but not for both F and F-1 leaves. Loss of both F and F-1 leaves was better compensated by BL 1473, a stably tolerant genotype in both years. For other genotypes sensitivity to defoliation was found as variable as tolerance to HLB. Key words: Spot blotch, tan spot, defoliation, compensation, flag leaf removal, penultimate leaf removal J. Inst. Agric. Anim. Sci. 26:43-50 (2005)


2015 ◽  
Vol 55 (3) ◽  
pp. 254-259 ◽  
Author(s):  
Beata Feledyn-Szewczyk ◽  
Krzysztof Jończyk

AbstractWhen growing wheat, one of the non-chemical methods of weed regulation is to choose wheat varieties which have a high ability to compete with weeds. The first aim of the research was the estimation of the relationships between the morphological features and canopy parameters of six spring wheat varieties. The second aim was the estimation of the varieties’ competitive ability against weeds. The third aim was the estimation of the grain yield of the six varieties. The experiment was carried out in the 2011–2013 time period, on fields which had been organically managed since 1994. Different features affected the weed infestation levels of the spring wheat varieties. For Bombona, negative correlations between the number of weeds and the height, dry matter of wheat, and wheat density, were proved. For Brawura, Hewilla, and Żura, the height, number of tillers, and dry matter of wheat were the main factors influencing weed abundance. A strong negative correlation between the number of weeds and the dry matter of wheat was found for Parabola. Cluster analysis indicated that Bombona and Brawura were the most competitive against weeds, while Monsun and Parabola were characterized as being the least competitive against weeds. Weed number significantly affected the grain yield of spring wheat (r= −0.418). The grain yield was positively correlated with the number of tillers (r= 0.459) and ears (r= 0.355), and the height (r= 0.534) and wheat dry matter (r= 0.411). Bombona and Brawura were the lowest yielding varieties (3.03 and 3.20 t · ha−1, respectively), whereas the highest yield was achieved by Żura (3.82 t · ha−1, on average).


2014 ◽  
Vol 60 (No. 12) ◽  
pp. 531-536 ◽  
Author(s):  
J. Olszewski ◽  
M. Makowska ◽  
A. Pszczółkowska ◽  
A. Okorski ◽  
T. Bieniaszewski

In a three-year field experiment the assessment of leaves and ears photosynthesis rate in spring wheat was made using a LI-COR 6400 portable photosynthesis system. The photosynthetic rate of spring wheat was affected by cultivars, nitrogen fertilization and weather conditions. We generally found a negative correlation between the yield of spring wheat and the rate of photosynthesis in flag leaves in phases 39–55 BBCH (the strength of this effect depended on the level of nitrogen fertilization). Strong negative correlation occurred for cv. Bryza in phases:  39–51 BBCH in treatment fertilized with lower dose of nitrogen and in phase 39–41 BBCH for dose 120 kg/ha. There was a significant negative correlation for cv. Tybald only in phase 39–41 BBCH for higher dose of nitrogen and 52–55 BBCH for lower dose. Our studies show that the photosynthetic activity of flag leaves decreased from the booting (39–41 BBCH) to heading stage (52–55 BBCH), and their function was taken over by ears. Contrary to flag leaf, in wheat ears the intensity of photosynthesis correlated positively with grain yield for most of the studied period (52–65 BBCH, with highly significant correlation at 56–57 BBCH and – only for high nitrogen treatments – at 59–61 BBCH; a negative correlation was generally observed at a later phase, i.e. at 65–69 BBCH). Contrary to flag leaf photosynthesis, the intensity of this process in wheat ears (at the heading and flowering stages) seems highly relevant for grain yield. High positive correlation was noted in 56–57 BBCH and 61–65 BBCH. However, the study was done in field conditions and for definitive conclusions observations over a longer period would be desirable.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 455
Author(s):  
Hafeez ur Rehman ◽  
Absaar Tariq ◽  
Imran Ashraf ◽  
Mukhtar Ahmed ◽  
Adele Muscolo ◽  
...  

Wheat crop experiences high temperature stress during flowering and grain-filling stages, which is termed as “terminal heat stress”. Characterizing genotypes for adaptive traits could increase their selection for better performance under terminal heat stress. The present study evaluated the morpho-physiological traits of two spring wheat cultivars (Millet-11, Punjab-11) and two advanced lines (V-07096, V-10110) exposed to terminal heat stress under late sowing. Early maturing Millet-11 was used as heat-tolerant control. Late sowing reduced spike length (13%), number of grains per spike (10%), 1000-grain weight (13%) and biological yield (15–20%) compared to timely sowing. Nonetheless, higher number of productive tillers per plant (19–20%) and grain yield (9%) were recorded under late sowing. Advanced lines and genotype Punjab-11 had delayed maturity and better agronomic performance than early maturing heat-tolerant Millet-11. Advanced lines expressed reduced canopy temperature during grain filling and high leaf chlorophyll a (20%) and b (71–125%) contents during anthesis under late sowing. All wheat genotypes expressed improved stem water-soluble carbohydrates under terminal heat stress that were highest for heat-tolerant Millet-11 genotype during anthesis. Improved grain yield was associated with the highest chlorophyll contents showing stay green characteristics with maintenance of high photosynthetic rates and cooler canopies under late sowing. The results revealed that advanced lines and Punjab-11 with heat adaptive traits could be promising source for further use in the selection of heat-tolerant wheat genotypes.


2011 ◽  
Vol 37 (10) ◽  
pp. 1752-1762 ◽  
Author(s):  
Yong ZHANG ◽  
Shi-Zhao LI ◽  
Zhen-Lu WU ◽  
Wen-Xiong YANG ◽  
Ya-Xiong YU ◽  
...  

2014 ◽  
Vol 907 ◽  
pp. 139-149 ◽  
Author(s):  
Eckart Uhlmann ◽  
Florian Heitmüller

In gas turbines and turbo jet engines, high performance materials such as nickel-based alloys are widely used for blades and vanes. In the case of repair, finishing of complex turbine blades made of high performance materials is carried out predominantly manually. The repair process is therefore quite time consuming. And the costs of presently available repair strategies, especially for integrated parts, are high, due to the individual process planning and great amount of manually performed work steps. Moreover, there are severe risks of partial damage during manually conducted repair. All that leads to the fact that economy of scale effects remain widely unused for repair tasks, although the piece number of components to be repaired is increasing significantly. In the future, a persistent automation of the repair process chain should be achieved by developing adaptive robot assisted finishing strategies. The goal of this research is to use the automation potential for repair tasks by developing a technology that enables industrial robots to re-contour turbine blades via force controlled belt grinding.


2021 ◽  
Vol 47 (2) ◽  
pp. 1-28
Author(s):  
Goran Flegar ◽  
Hartwig Anzt ◽  
Terry Cojean ◽  
Enrique S. Quintana-Ortí

The use of mixed precision in numerical algorithms is a promising strategy for accelerating scientific applications. In particular, the adoption of specialized hardware and data formats for low-precision arithmetic in high-end GPUs (graphics processing units) has motivated numerous efforts aiming at carefully reducing the working precision in order to speed up the computations. For algorithms whose performance is bound by the memory bandwidth, the idea of compressing its data before (and after) memory accesses has received considerable attention. One idea is to store an approximate operator–like a preconditioner–in lower than working precision hopefully without impacting the algorithm output. We realize the first high-performance implementation of an adaptive precision block-Jacobi preconditioner which selects the precision format used to store the preconditioner data on-the-fly, taking into account the numerical properties of the individual preconditioner blocks. We implement the adaptive block-Jacobi preconditioner as production-ready functionality in the Ginkgo linear algebra library, considering not only the precision formats that are part of the IEEE standard, but also customized formats which optimize the length of the exponent and significand to the characteristics of the preconditioner blocks. Experiments run on a state-of-the-art GPU accelerator show that our implementation offers attractive runtime savings.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


Sign in / Sign up

Export Citation Format

Share Document