scholarly journals Validation of a biomarker tool capable of measuring the absorbed dose soon after exposure to ionizing radiation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Giovanetti ◽  
Raffaella Marconi ◽  
Noha Awad ◽  
Hala Abuzied ◽  
Neveen Agamy ◽  
...  

AbstractA radiological or nuclear attack could involve such a large number of subjects as to overwhelm the emergency facilities in charge. Resources should therefore be focused on those subjects needing immediate medical attention and care. In such a scenario, for the triage management by first responders, it is necessary to count on efficient biological dosimetry tools capable of early detection of the absorbed dose. At present the validated assays for measuring the absorbed dose are dicentric chromosomes and micronuclei counts, which require more than 2–3 days to obtain results. To overcome this limitation the NATO SPS Programme funded an Italian–Egyptian collaborative project aimed at validating a fast, accurate and feasible tool for assessing the absorbed dose early after radiation exposure. Biomarkers as complete blood cell counts, DNA breaks and radio-inducible proteins were investigated on blood samples collected before and 3 h after the first fraction of radiotherapy in patients treated in specific target areas with doses/fraction of about: 2, 3.5 or > 5 Gy and compared with the reference micronuclei count. Based on univariate and multivariate multiple linear regression correlation, our results identify five early biomarkers potentially useful for detecting the extent of the absorbed dose 3 h after the exposure.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Sadaf Aghevlian ◽  
Zhongli Cai ◽  
David Hedley ◽  
Mitchell A. Winnik ◽  
Raymond M. Reilly

Abstract Background Epidermal growth factor receptors (EGFR) are overexpressed on > 90% of pancreatic cancers (PnCa) and represent an attractive target for the development of novel therapies, including radioimmunotherapy (RIT). Our aim was to study RIT of subcutaneous (s.c.) PANC-1 human PnCa xenografts in mice using the anti-EGFR monoclonal antibody, panitumumab labeled with Auger electron (AE)-emitting, 111In or β-particle emitting, 177Lu at amounts that were non-toxic to normal tissues. Results Panitumumab was conjugated to DOTA chelators for complexing 111In or 177Lu (panitumumab-DOTA-[111In]In and panitumumab-DOTA-[177Lu]Lu) or to a metal-chelating polymer (MCP) with multiple DOTA to bind 111In (panitumumab-MCP-[111In]In). Panitumumab-DOTA-[177Lu]Lu was more effective per MBq exposure at reducing the clonogenic survival in vitro of PANC-1 cells than panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In. Panitumumab-DOTA-[177Lu]Lu caused the greatest density of DNA double-strand breaks (DSBs) in the nucleus measured by immunofluorescence for γ-H2AX. The absorbed dose in the nucleus was 3.9-fold higher for panitumumab-DOTA-[177Lu]Lu than panitumumab-DOTA-[111In]In and 7.7-fold greater than panitumumab-MCP-[111In]In. No normal tissue toxicity was observed in NOD/SCID mice injected intravenously (i.v.) with 10.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In or in NRG mice injected i.v. with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu. There was no decrease in complete blood cell counts (CBC) or increased serum alanine aminotransferase (ALT) or creatinine (Cr) or decreased body weight. RIT inhibited the growth of PANC-1 tumours but a 5-fold greater total amount of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In (30 MBq; 30 μg; ~ 0.21 nmoles) administered in three fractionated amounts every three weeks was required to achieve greater or equivalent tumour growth inhibition, respectively, compared to a single amount of panitumumab-DOTA-[177Lu]Lu (6 MBq; 10 μg; ~ 0.07 nmoles). The tumour doubling time (TDT) for NOD/SCID mice with s.c. PANC-1 tumours treated with panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In was 51.8 days and 28.1 days, respectively. Panitumumab was ineffective yielding a TDT of 15.3 days vs. 15.6 days for normal saline treated mice. RIT of NRG mice with s.c. PANC-1 tumours with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu increased the TDT to 20.9 days vs. 11.5 days for panitumumab and 9.1 days for normal saline. The absorbed doses in PANC-1 tumours were 8.8 ± 3.0 Gy and 2.6 ± 0.3 Gy for panitumumab-DOTA-[111In]In and panitumumab-MCP-[111In]In, respectively, and 11.6 ± 4.9 Gy for panitumumab-DOTA-[177Lu]Lu. Conclusion RIT with panitumumab labeled with Auger electron-emitting, 111In or β-particle-emitting, 177Lu inhibited the growth of s.c. PANC-1 tumours in NOD/SCID or NRG mice, at administered amounts that caused no normal tissue toxicity. We conclude that EGFR-targeted RIT is a promising approach to treatment of PnCa.


2017 ◽  
Author(s):  
John Dou ◽  
Rebecca J. Schmidt ◽  
Kelly S. Benke ◽  
Craig Newschaffer ◽  
Irva Hertz-Picciotto ◽  
...  

AbstractBackgroundCord blood DNA methylation is associated with numerous health outcomes and environmental exposures. Whole cord blood DNA reflects all nucleated blood cell types, while centrifuging whole blood separates red blood cells by generating a white blood cell buffy coat. Both sample types are used in DNA methylation studies. Cell types have unique methylation patterns and processing can impact cell distributions, which may influence comparability.ObjectivesTo evaluate differences in cell composition and DNA methylation between buffy coat and whole cord blood samples.MethodsCord blood DNA methylation was measured with the Infinium EPIC BeadChip (Illumina) in 8 individuals, each contributing buffy coat and whole blood samples. We analyzed principal components (PC) of methylation, performed hierarchical clustering, and computed correlations of mean-centered methylation between pairs. We conducted moderated t-tests on single sites and estimated cell composition.ResultsDNA methylation PCs were associated with individual (PPC1=1.4x10-9; PPC2=2.9x10-5; PPC3=3.8x10-5; PPC4=4.2x10-6; PPC5=9.9x10-13), and not with sample type (PPC1-5>0.7). Samples hierarchically clustered by individual. Pearson correlations of mean-centered methylation between paired individual samples ranged from r=0.66 to r=0.87. No individual site significantly differed between buffy coat and whole cord blood when adjusting for multiple comparisons (5 sites had unadjusted P<10-5). Estimated cell type proportions did not differ by sample type (P=0.86), and estimated cell counts were highly correlated between paired samples (r=0.99).ConclusionsDifferences in methylation and cell composition between buffy coat and whole cord blood are much lower than inter-individual variation, demonstrating that both sample preparation types can be analytically combined and compared.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 388 ◽  
Author(s):  
Sarah Schumann ◽  
Harry Scherthan ◽  
Torsten Frank ◽  
Constantin Lapa ◽  
Jessica Müller ◽  
...  

The aim was to investigate the induction and repair of radiation-induced DNA double-strand breaks (DSBs) as a function of the absorbed dose to the blood of patients undergoing PET/CT examinations with [68Ga]Ga-PSMA. Blood samples were collected from 15 patients before and at four time points after [68Ga]Ga-PSMA administration, both before and after the PET/CT scan. Absorbed doses to the blood were calculated. In addition, blood samples with/without contrast agent from five volunteers were irradiated ex vivo by CT while measuring the absorbed dose. Leukocytes were isolated, fixed, and stained for co-localizing γ-H2AX+53BP1 DSB foci that were enumerated manually. In vivo, a significant increase in γ-H2AX+53BP1 foci compared to baseline was observed at all time points after administration, although the absorbed dose to the blood by 68Ga was below 4 mGy. Ex vivo, the increase in radiation-induced foci depended on the absorbed dose and the presence of contrast agent, which could have caused a dose enhancement. The CT-dose contribution for the patients was estimated at about 12 mGy using the ex vivo calibration. The additional number of DSB foci induced by CT, however, was comparable to the one induced by 68Ga. The significantly increased foci numbers after [68Ga]Ga-PSMA administration may suggest a possible low-dose hypersensitivity.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Alice V. Easton ◽  
Mayra Raciny-Aleman ◽  
Victor Liu ◽  
Erica Ruan ◽  
Christian Marier ◽  
...  

ABSTRACT The role of the gut microbiota during coinfection with soil-transmitted helminths (STH) and Plasmodium spp. is poorly understood. We examined peripheral blood and fecal samples from 130 individuals who were either infected with Plasmodium vivax only, coinfected with P. vivax and STH, infected with STH alone, or not infected with either P. vivax or STH. In addition to a complete blood count (CBC) with differential, transcriptional profiling of peripheral blood samples was performed by transcriptome sequencing (RNA-Seq), fecal microbial communities were determined by 16S rRNA gene sequencing, and circulating cytokine levels were measured by bead-based immunoassays. Differences in blood cell counts, including an increased percentage of neutrophils, associated with a transcriptional signature of neutrophil activation, were driven primarily by P. vivax infection. P. vivax infection was also associated with increased levels of interleukin 6 (IL-6), IL-8, and IL-10; these cytokine levels were not affected by STH coinfection. Surprisingly, P. vivax infection was more strongly associated with differences in the microbiota than STH infection. Children infected with only P. vivax exhibited elevated Bacteroides and reduced Prevotella and Clostridiaceae levels, but these differences were not observed in individuals coinfected with STH. We also observed that P. vivax parasitemia was higher in the STH-infected population. When we used machine learning to identify the most important predictors of the P. vivax parasite burden (among P. vivax-infected individuals), bacterial taxa were the strongest predictors of parasitemia. In contrast, circulating transforming growth factor β (TGF-β) was the strongest predictor of the Trichuris trichiura egg burden. This study provides unexpected evidence that the gut microbiota may have a stronger link with P. vivax than with STH infection. IMPORTANCE Plasmodium (malaria) and helminth parasite coinfections are frequent, and both infections can be affected by the host gut microbiota. However, the relationship between coinfection and the gut microbiota is unclear. By performing comprehensive analyses on blood/stool samples from 130 individuals in Colombia, we found that the gut microbiota may have a stronger relationship with the number of P. vivax (malaria) parasites than with the number of helminth parasites infecting a host. Microbiota analysis identified more predictors of the P. vivax parasite burden, whereas analysis of blood samples identified predictors of the helminth parasite burden. These results were unexpected, because we expected each parasite to be associated with greater differences in its biological niche (blood for P. vivax and the intestine for helminths). Instead, we find that bacterial taxa were the strongest predictors of P. vivax parasitemia levels, while circulating TGF-β levels were the strongest predictor of helminth parasite burdens.


2014 ◽  
Vol 111 (28) ◽  
pp. 10269-10274 ◽  
Author(s):  
J. Hu ◽  
S. Tepsuporn ◽  
R. M. Meyers ◽  
M. Gostissa ◽  
F. W. Alt

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3105-3105
Author(s):  
Hongan Le ◽  
Sabine Schnyder ◽  
Nga Du ◽  
Grace Loredo ◽  
Sheetal Singh ◽  
...  

Abstract Rearrangements of the MLL gene are found in approximately 75–80% of both infant acute leukemia (IAL) and therapy related myeloid leukemia (tAML), the latter linked to prior exposure to Topoisomerase II inhibitors. In order to study the mechanism whereby such rearrangements are induced, a fine mapping screen was performed using Inverse PCR to analyze a MLL location at the intron 11/exon 12 border that is known to be a hot spot for the induction of DNA breaks and rearrangements. Human lymphoblastoid TK6 cells were exposed to the pro-apoptotic agent anti-CD95 and estrogen as both the apoptotic process and birth control formulations have been associated with the development of MLL-linked leukemia. The latter association was determined as part of an epidemiological analysis of IAL. In addition, blood samples from patients receiving Topoisomerase II inhibitor therapy, subsequent to a diagnosis of breast cancer or lymphoma, were examined in the same manner as such drugs are strongly associated with the etiology of tAML. From an initial screen of cells treated in-vitro, 13/27 of all rearrangement break points (translocations/insertions) were located within a 3 bp tract at the 5′ edge of a 10 bp palindrome that defined a potential 101 bp stem-loop with its 3′ palindrome partner. Analysis of blood samples taken up to a year after treatment initiation from lymphoma and breast cancer patients, showed a similar distribution of translocations with 10/20 events restricted to the same location on the 5′ of the palindrome. Further examination of the putative stem-loop structure showed a high stringency Topoisomerase II consensus sequence binding site at the geometric midpoint of the proposed stem-loop. In order to link the rearrangements observed with DNA cleavage events, TK6 cells exposed to anti-CD95 antibody were also screened for DNA breaks within the same region of MLL. Here, LM-PCR products spanning the region of interest were extracted from DNA gels and the location of cleavage determined by cloning and sequencing. From four to twenty four hours after anti-CD95 exposure, analysis of the breaks induced showed 24/37 (65%) were located at the base of the proposed stem loop associated with the DNA palindrome. 14/37 (38%) of breaks were found within a 40 bp tract at the 5′ side and 10/37 (27%) within a 20 bp tract at the 3′ side of the palindrome base. In each case, the hot spots for cleavage identified by LM-PCR included the palindromic sequences. Thus, unlike the 5′ restriction of MLL rearrangements, DNA fragmentation occurred at both sides of the proposed stem loop base, indirectly supporting the creation of such a structure in-vivo that is subject to local attack at the stem base. Palindrome association may be driven by the bending Topoisomerase II exerts when bound at the midpoint between each palindrome, such that each half of the proposed palindrome is brought into physical contact. This effect would be accentuated by poisoning of Topoisomerase II, subsequent to binding of drugs such as etoposide that stabilize the cleavable complex. We propose a model for a sub-group of MLL rearrangements that utilize Topoisomerase II mediated stabilization, either natively or subsequent to chemical poisoning, to assist in the creation of stable DNA structures that are permissive for DNA fragmentation. Further, the conversion of DNA double strand breaks at these sites to detectable rearrangements may be influenced by 5′ to 3′ DNA processing functions, such as transcription or replication.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3099-3099 ◽  
Author(s):  
Thomas Porturas ◽  
Mary Sell ◽  
Leah Irwin ◽  
Una O'Doherty ◽  
Carlos Hipolito Villa

Abstract Background: Although peripheral blood CD34+ stem cell counts by flow cytometry correlate well with yields, the time, complexity, and cost associated with flow cytometry limits its utility. Rapid, cost-effective, surrogate predictors (with <1hr turnaround) would allow for same-visit analyses and alteration of collection and mobilization strategies, particularly for the optimal use of time-sensitive and costly agents such as plerixafor. We previously demonstrated that morphologic parameters of neutrophil-like cells measured by hematology analyzers correlated with CD34 counts. We aimed to improve these models by using multiple regression analyses on data from a common hematology analyzer. Methods: Patients undergoing stem cell apheresis were evaluated over a 6 month period. The day prior to initiation of apheresis, and on the morning of initial collection, peripheral blood samples were drawn into EDTA collection tubes and flow cytometric CD34 measurement and/or CBCs were performed on the Beckman Coulter DxH 800 hematology analyzer per standard protocol. CD34 cells were counted by flow cytometric ISHAGE protocols. Data from the DxH (48 variables per specimen) were exported into a data matrix with the corresponding flow cytometric data. Multiple regression analysis was performed using a step-wise method with log(peripheral CD34) as the dependent variable (SPSS, IBM). Data were randomly selected into a training-set of 70% of cases and a test-set of 30% of cases for validation. The derived model was further tested against peripheral blood data from the morning of collection to predict harvest yields. Further analyses were performed using Prism (GraphPad). Results: Tandem peripheral blood CD34 counts and CBC cell-population data were obtained from 69 blood samples in 64 patients. The population included patients with multiple myeloma (45), non-Hodgkin lymphoma (12), Hodgkin lymphoma (5), and amyloidosis (2). 41% of patients were female. In the test data set examining collection yields, 37 patients were mobilized with GCSF (+/- chemotherapy) alone, while 17 had plerixafor added to the regimen. 33 of these patients had same-day CBC data available for model prediction. The median processed volume was 15 L (range 5.9 to 19.7). The model to predict peripheral CD34 counts incorporated 3 variables from the hematology analyzer data (SD-V-EGC, SD-C-EGC, and NE#). Interestingly, the model included two variables descriptive of the morphology of early granulocytic cells. The model demonstrated an R value of 0.829 (adjusted R2 = 0.670, figure 1a). In testing the morning-of-collection model-predicted peripheral CD34, we found the model performed similarly to flow cytometry in predicting 1st collection yields. Furthermore, the CD34 prediction using the model (Figure 1 b) resulted in similar correlation with first-collection yields in patients treated with plerixafor versus patients not treated with plerixafor, in contrast to day-prior CD34 counts by flow-cytometry (Figure 1c). Two outliers for CD34 cell yield based on model predicted peripheral CD34 were identified. In one patient, the processed volume was very low (6.8 L, <5% percentile), while the second had a low mononuclear cell collection efficiency (35%) compared to the mean in this population (58.7%±23.3%). Threshold values for the model accurately identified patients appropriate for collection initiation (or plerixafor administration). Conclusion: Using data from a common, automated CBC analyzer, we developed a rapid, less-costly, and simple model to predict CD34 cell counts and 1st harvest yields. Because the measurement results can be obtained within the same clinic visit, and can be repeated with each CBC, the model is particularly useful to guide optimal use of plerixafor. We also envision that the model is useful for quality assurance of collection by identifying patients in whom cell yields were sub-optimal with respect to predicted CD34 cell counts. Additional studies to test the model in a larger population are ongoing. We propose that this model (and similarly derived models) can be implemented in clinical planning algorithms to improve the efficiency and cost of stem cell collection by apheresis. Acknowledgments: We would like to acknowledge and the nurses and staff of the apheresis unit and the stem cell and flow cytometry laboratories at the Hospital of the University of Pennsylvania for their contributions. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 11056-11056
Author(s):  
M. A. Elshaikh ◽  
Z. Abdel Hafeez ◽  
M. Lu ◽  
D. Ibrahim ◽  
T. El Masry ◽  
...  

11056 Background: CD4 and CD8 T cells play critical roles in human immunity. The aim of this prospective study is to explore the correlation of the absolute CD4/CD8 T cell counts and total testosterone in patients receiving androgen deprivation therapy (ADT) with goserelin acetate and definitive radiation treatment (RT) for their prostate cancer. Methods: Thirty-four HIV-negative patients were included in this study between June 2006 and January 2007. All patients had a baseline total testosterone level (T), PSA, CD4 and CD8 T cell counts. CD4/8 T cells count was measured using flow cytometry. All patients received 6 months of ADT prior to (baseline) and during RT to the prostate. Subsequent blood samples were taken at 2, 8, 12 and 24 months. Blood samples were taken between 8–10 am to control for diurnal variations in CD4/CD8 T cell counts and T levels. To study the correlation of T with CD4/8 T cell changes, the Spearman correlation coefficient was calculated. The study was approved by the appropriate Ethics Committee. Results: Median age for the study patients was 68 years. At baseline, median testosterone level was 350 ng/dL, median CD4 T cell count was 1055 mm3, and median CD8 T cell count was 644 mm3. None of the patients received anti-androgens. At two months, testosterone was at the castrate and subnormal levels in 85% and 100% of the patients, respectively. The lower testosterone levels resulted in significant reduction of CD4 and CD8 T cell counts at 2, 8, 12 and 24 months compared to baseline counts. This effect was more pronounced for CD4 T cells at all time points (p=<0.02). At 24 months, when total testosterone levels were increasing, CD4 and CD8 T cell counts were also following these upward trends. The seen correlation between lower testosterone and decline in CD4 and CD8 T cells was only statistically significant in older patients (>65 years) and was not associated with significant decline in total white blood cell counts. Conclusions: CD4/CD8 T cell counts are sensitive to changes in total testosterone levels. Lower testosterone levels negatively affecting CD4/CD8 T cells counts at all study time points. Since CD4/CD8 T cells play major roles in cellular immunity, further studies are warranted No significant financial relationships to disclose.


1970 ◽  
Vol 48 (4) ◽  
pp. 900-901 ◽  
Author(s):  
G. B. Friedmann

A comparison of the blood parameters, cell count, and haemoglobin level for heart and tail blood of adult Taricha granulosa is presented. Data from 10 pairs of cell counts and 7 pairs of haemoglobin levels indicate that heart blood yields values only some three-quarters as large as does tail blood for these two parameters.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3327-3327
Author(s):  
Debora Queiros ◽  
Susanne Luther-Wolf ◽  
Eva M Weissinger ◽  
Arnold Ganser

Abstract Background: Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for malignant hematological diseases in adults. Due to the delayed immune reconstitution after HSCT, human cytomegalovirus (CMV) can reactivate, leading to prolonged hospitalization and increased morbidity and even mortality. Natural Killer (NK) cells have recently been described to undergo persistent reconfiguration in response to CMV-reactivation. Here we analyzed the presence and expansion of CMV-specific NK cells in patients after allogeneic HSCT. Methods: A multicolor flow cytometry panel for monitoring the CMV-specific NK cell (NKG2C+CD57+) reconstitution and expression of activating receptors was established. Reconstitution of CMV-specific NK cells was assessed in peripheral blood samples from 67 CMV-seropositive patients. The samples were collected and analyzed between day 0 and 100 post-HSCT at intervals of 7-10 days. Monitoring of CMV-reactivation by CMV-pp65 expression and reconstitution of CMV-specific T cells (CMV-CTLs) was done routinely in our laboratory, using 7 commercially available, certified CMV-tetramers, allowing for comparison of CMV-CTL and NKG2C+CD57+ NK cells. For further immunological tests, PBMCs from CMV-seropositive healthy volunteers were isolated by density gradient centrifugation. NK cells were negatively selected by magnetic bead separation. Additional purification of NKG2C+CD57+ NK cellswas achieved by cell sorting. Selected NK cells were expanded by co-culture with irradiated allogeneic PBMCs as feeder cells and the medium was supplemented with PHA and IL-2. Expanded CD57+NKG2C+ NK cells were KIR-typed. Results: Our patient cohort consisted of 67 patients after allogeneic HSCT with a median age of 59 years (range: 20-75). Forty-two patients (62.7%) were transplanted for acute leukemia, 54 (80.6%) received reduced intensity conditioning (RIC) and 62 (92.5%) received anti-thymocyte-antibodies globulin (ATG). GvHD-prophylaxis was cyclosporine A (CsA) in combination with mycophenolate motefil (MMF) for 82.1% of the patients and 77.6% were transplanted from matched donors. Thirty-three (49.2%) patients reactivated CMV (median age: 59.5 years, range 28-75; median day of reactivation: 38 days post-HSCT, range: 19-54). A significant increase in the absolute cell counts of NKG2C+CD57+ NK cells was observed after CMV reactivation, when compared to patients who did not reactivate CMV (p<0.0001). Interestingly, we observed a decreased expression of the CD8-molecule on NK cells during CMV-reactivation. CD8-expression on NK cells was previously described to be associated with a more cytotoxic phenotype of NK cells, this decrease may be a consequence of apoptosis following lytic activity. Monitoring for an additional activation marker, NKG2D, showed a significant increased expression after CMV reactivation (p=0.006), demonstrating not only the activating regulation of NK cells, but also, the co-stimulatory effects on T cell proliferation and cytokine production. Remarkably, when comparing NKG2C+CD57+ NK cells with CMV-specific T cells (Figure 1), both cell populations show similar kinetics of expansion, with an increase in the absolute cell counts during and after CMV-reactivation. NKG2C+CD57+ preliminary expansion-studies were performed using peripheral blood samples from CMV-seropositive healthy volunteers. After two weeks in culture, an expansion of up to 3100-fold was achieved. Further studies to assess the proliferative capacity of NKG2C+CD57+ subpopulation and its functional properties post-HSCT, are ongoing. In addition, an extensive panel of cytokines and chemokines excreted by the NKG2C+CD57+cells will be studied in order to evaluate their recruitment ability of other cell-types. Conclusion: Taken together, our results indicate that NK cells undergo a dynamic modulation and expansion of this population occurs in response to CMV-reactivation. Additionally, NKG2C+CD57+ NK cells may substitute for missing CMV-specific T cells shortly after HSCT and may play an important role in sustaining the immune reconstitution after CMV-reactivation. This study shows that NKG2C+CD57+ NK cells can be selected and expanded in vitro, holding promise for adoptive transfer in patients with recurrent CMV-reactivations. Disclosures Ganser: Novartis: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document