scholarly journals Architecting functionalized carbon microtube/carrollite nanocomposite demonstrating significant microwave characteristics

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reza Peymanfar ◽  
Elnaz Selseleh-Zakerin ◽  
Ali Ahmadi ◽  
Seyed Hassan Tavassoli

AbstractBiomass-derived materials have recently received considerable attention as lightweight, low-cost, and green microwave absorbers. On the other hand, sulfide nanostructures due to their narrow band gaps have demonstrated significant microwave characteristics. In this research, carbon microtubes were fabricated using a biowaste and then functionalized by a novel complementary solvothermal and sonochemistry method. The functionalized carbon microtubes (FCMT) were ornamented by CuCo2S4 nanoparticles as a novel spinel sulfide microwave absorber. The prepared structures illustrated narrow energy band gap and deposition of the sulfide structures augmented the polarizability, desirable for dielectric loss and microwave attenuation. Eventually, the architected structures were blended by polyacrylonitrile (PAN) to estimate their microwave absorbing and antibacterial characteristics. The antibacterial properties against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were scrupulously assessed. Noteworthy, the maximum reflection loss (RL) of the CuCo2S4/PAN with a thickness of 1.75 mm was 61.88 dB at 11.60 GHz, while the architected FCMT/PAN composite gained a broadband efficient bandwidth as wide as 7.91 GHz (RL > 10 dB) and 3.25 GHz (RL > 20 dB) with a thickness of 2.00 mm. More significantly, FCMT/CuCo2S4/PAN demonstrated an efficient bandwidth of 2.04 GHz (RL > 20 dB) with only 1.75 mm in thickness. Interestingly, FCMT/CuCo2S4/PAN and CuCo2S4/PAN composites demonstrated an electromagnetic interference shielding efficiency of more than 90 and 97% at the entire x and ku-band frequencies, respectively.

Nanoscale ◽  
2021 ◽  
Author(s):  
Binguo Liu ◽  
Qi Zhang ◽  
Yuanhui Huang ◽  
Dong Liu ◽  
Wei Pan ◽  
...  

Flexible and wearable electronic technology is in great demand with the rising of smart electronic systems. Among this, exploring multifunctional with high performance at low cost has attracted extensive attention...


2017 ◽  
Vol 751 ◽  
pp. 270-276 ◽  
Author(s):  
Warot Prasanseang ◽  
Chaval Sriwong ◽  
Kittisak Choojun

Ag-natural rubber (Ag-NR) hybrid sheets were successfully prepared with a very simple and low cost method. In this method, silver nanoparticles (AgNPs) were firstly synthesized by a rapid and green microwave-assisted using polyvinylpyrroridone (PVP) media. The effect of PVP weight ratios towards the size of AgNPs was also investigated. Then, Ag-NR hybrid sheet samples were prepared by latex mixing-casting method using concentrated natural rubber (NR) latex with the synthesized AgNPs colloids. The characteristic absorption, particles sizes and shapes of the obtained AgNPs were examined through UV-vis, TEM and SAED. Also, the prepared Ag-NR sheet samples were characterized using XRD, FT-IR, SEM and EDS techniques. It was found that the particles sizes of all the synthesized AgNPs had spherical-like shape, and the mean sizes were increased from 29.7 to 90.4 nm upon increasing PVP contents. EDS results showed the AgNPs were well-dispersed and impregnated into the rubber matrix. Moreover, the antibacterial properties of the prepared Ag-NR sheets were tested by agar disk-diffusion method with Gram-positive and Gram-negative bacteria as Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli), respectively. The results showed that the hybrid sheets exhibited excellent antibacterial properties against these bacteria, in which the zones of inhibition were also dependent on the synthesized AgNPs by utilizing the different amounts of PVP.


RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75229-75238 ◽  
Author(s):  
M. Farukh ◽  
Ridham Dhawan ◽  
Bhanu P. Singh ◽  
S. K. Dhawan

PEDOT/MWCNT/PU composite films were designed, which show a shielding effectiveness of ∼45 dB in the Ku-band and a static decay time of 0.2 s which can find applications for the control of EM pollution also as an ESD material for the encapsulation of electronic equipments.


2007 ◽  
Vol 7 (2) ◽  
pp. 549-554
Author(s):  
Yonglai Yang ◽  
Mool C. Gupta ◽  
Kenneth L. Dudley ◽  
Roland W. Lawrence

Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4–18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band.


2016 ◽  
Vol 27 (3) ◽  
pp. 137-157 ◽  
Author(s):  
Prerna Ramnath Modak ◽  
◽  
Deoram Vithoba Nandanwar ◽  
Subhash Baburao Kondawar ◽  
◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 79058-79065 ◽  
Author(s):  
Pritom J. Bora ◽  
Gaurav Lakhani ◽  
Praveen C. Ramamurthy ◽  
Giridhar Madras

In this study, we studied the electromagnetic interference (EMI) shielding property of a solution processed polyvinylbutyral–polyaniline nanocomposite (PVBPN) film in the X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz) frequency.


Sign in / Sign up

Export Citation Format

Share Document