scholarly journals A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simone R. Castro ◽  
Lígia N. M. Ribeiro ◽  
Márcia C. Breitkreitz ◽  
Viviane A. Guilherme ◽  
Gustavo H. Rodrigues da Silva ◽  
...  

AbstractTetracaine (TTC) is a local anesthetic broadly used for topical and spinal blockade, despite its systemic toxicity. Encapsulation in nanostructured lipid carriers (NLC) may prolong TTC delivery at the site of injection, reducing such toxicity. This work reports the development of NLC loading 4% TTC. Structural properties and encapsulation efficiency (%EE > 63%) guided the selection of three pre-formulations of different lipid composition, through a 23 factorial design of experiments (DOE). DLS and TEM analyses revealed average sizes (193–220 nm), polydispersity (< 0.2), zeta potential |− 21.8 to − 30.1 mV| and spherical shape of the nanoparticles, while FTIR-ATR, NTA, DSC, XRD and SANS provided details on their structure and physicochemical stability over time. Interestingly, one optimized pre-formulation (CP-TRANS/TTC) showed phase-separation after 4 months, as predicted by Raman imaging that detected lack of miscibility between its solid (cetyl palmitate) and liquid (Transcutol) lipids. SANS analyses identified lamellar arrangements inside such nanoparticles, the thickness of the lamellae been decreased by TTC. As a result of this combined approach (DOE and biophysical techniques) two optimized pre-formulations were rationally selected, both with great potential as drug delivery systems, extending the release of the anesthetic (> 48 h) and reducing TTC cytotoxicity against Balb/c 3T3 cells.

2019 ◽  
Vol 10 (2) ◽  
pp. 1382-1391 ◽  
Author(s):  
Sucharitha P ◽  
Satyanarayana SV ◽  
Bhaskar Reddy K

The current study aims to explore and identify the screening of formulation components and evaluates the quality issues of nanostructured lipid carriers (NLCs) for the phenolic secoirodoid Oleuropein. The stepwise screening of the components for preparation of NLCs includes the selection of solid lipid, liquid lipid based on the relative solubility of Oleuropein in different lipids. Polaxomer 188 was selected as the main surfactant for the preparation of NLCs because of its good emulsification efficacy for the solid lipid liquid mix. Lecithin was used to enhance the stability of NLC. The optimized formulation was also evaluated for different quality issues. Thermal analysis by DSC revealed that the lipid particles maintained sufficiently good melting point even after nanonization. Absence of gelation and resilience for the stress provided by autoclaving further established the quality of the developed NLCs. In a nutshell, a systematic protocol was developed for designing of Oleuropein NLC with good particulate parameters of minimum particle size and maximum zeta potential with narrow polydispersity index.


Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 172-177
Author(s):  
B. Yudhistira ◽  
N.A. Choiriyah

Roselle contains high phenolic compounds, mainly anthocyanins that are not stable with pH, metal ions, light exposure, temperature, oxygen, and enzymatic activity. The stability of phenolic compounds can be improved by nanoencapsulation. This research was aimed to evaluate the effect of inulin, inulin-chitosan and inulin-chitosan-maltodextrin with varying concentrations as encapsulants towards the physicochemical properties and encapsulation efficiency of nanocapsules product by spray drying. Roselle extract nanocapsules were prepared using various types and concentrations of encapsulants (inulin, inulin-chitosan and inulin-chitosan-maltodextrin). The solubility of nanocapsules ranged from 69.31 - 83.2%, while the hygroscopicity of nanocapsules was varied, approximately 17.89 - 23.79%. Nanocapsules moisture content was approximately 2.83 - 4.27%, while the total phenolic content of nanocapsules ranged from 6.74 - 13.41 mg GAE/g DW. The total anthocyanin of roselle extract nanocapsules was approximately 2.25 - 4.82 mg/g DW. The encapsulation efficiency of phenolic compounds in this study were approximately 60.31 - 77.13%. Nanocapsules with inulin-chitosan-maltodextrin (2.4%-2.4%-0.2%) had good properties of nanocapsules such as good solubility, high total phenolic content and total anthocyanin content. Nanocapsules with 5% inulin and inulinchitosan-maltodextrin (2.4%-2.4%-0.2%) had particle size of 641.4 and 411.1 nm respectively. The nanocapsules had a spherical shape, smooth surfaces but also a few had indentations.


2018 ◽  
Vol 10 (5) ◽  
pp. 281
Author(s):  
Monika P. ◽  
Basavaraj B. V. ◽  
Chidambara Murthy K. N. ◽  
Ahalya N. ◽  
Bharath S.

Objective: The primary goal of this study was to convert a natural catechin-rich extract into nanoparticles by using a biodegradable and non-toxic polymer Eudragit L 100 to address the various biopharmaceutical problems of catechin.Methods: Nanoparticles were prepared by emulsion solvent evaporation technique using Eudragit L 100 in increasing concentration. Optimization of processing conditions like a selection of organic solvents, diluent and surfactant concentrations, drug and polymer ratio and method of drying to increase the biological efficiency were duly attempted. Parameters such as dynamic light scattering, zeta potential, SEM and energy-dispersive X-ray spectroscopy were assessed for the evaluation of nanoparticles.Results: The entrapment efficiency was found to be between 35-45 % with methanol compared to other organic solvents. The zeta potential values of all the formulations were in the range of±30 mV to±60 mV) which confirms moderate to good stability. A rapid or ‘burst’ effect of the drug release in pH 6.8 buffer showing 92 % in the first 30 min which gradually decreased to 52 % by the end of 180 min but in the pH 7.4, the release was found to be moderate. SEM and DLS indicated particles were of spherical shape lying in a nanometer range of 100 to 200 nm with a proportional influence of polymer on the particles size.Conclusion: Nanoformulations were found to be more stable and confirmed the presence of major elements such as carbon and oxygen. The findings collectively indicate that it may be worthwhile to apply nanotechnology for the design of an advanced oral dosage form for an enhanced bioavailability and biological efficacy.


2019 ◽  
Vol 17 (1) ◽  
pp. 365-380 ◽  
Author(s):  
Azlan Kamari ◽  
Siti Najiah Mohd Yusoff

AbstractThis study investigates the potential of N-octyl chitosan derivatives, namely N-octyl-O-sulfate chitosan (NOOSC), N-octyl-N-succinyl chitosan (NONSC) and N-octyl-O-glycol chitosan (NOOGC) as amphiphilic carrier agents for atrazine in water-insoluble herbicide formulations. The N-octyl chitosan derivatives were characterised using several analytical instruments such as Fourier Transform Infrared (FTIR) Spectrometer, CHNS-O Elemental Analyser (CHNS-O), Transmission Electron Microscope (TEM), Thermogravimetric Analyser (TGA), Differential Scanning Calorimeter (DSC) and Fluorescence Spectrometer. The encapsulation of atrazine by N-octyl chitosan derivatives was studied using a High Performance Liquid Chromatography (HPLC). The FTIR spectra of N-octyl chitosan derivatives confirmed the presence of hydrophobic and hydrophilic groups on chitosan backbone. TEM images revealed that N-octyl chitosan derivatives have formed self-aggregates with a spherical shape. The CMC values for N-octyl chitosan derivatives were between 0.06 and 0.09 mg/mL. The encapsulation efficiency (EE) values for amphiphilic chitosan were greater than 90%. The release profiles showed different release behaviour of pure herbicide in solution as compared to atrazine-loaded N-octyl chitosan derivatives. Results suggest that the chitosan derivatives offer promising characteristics that enable them to act as effective carrier agents for atrazine. In conclusion, the application of N-octyl chitosan derivatives could reduce the use of organic solvents in herbicide formulations by 37.5%.


2018 ◽  
Vol 10 (1) ◽  
pp. 211 ◽  
Author(s):  
Effionora Anwar ◽  
Putri Amalia Handayani

Objective: The aim of this study was to prepare transfersome-loaded microspheres which had good characteristics and physicochemical stability toincrease bioavailability of the polyphenol component of green tea leaf extract in the body.Methods: Transfersomes were prepared using a thin-layer hydration method. Green tea leaf extract transfersomes were formulated in the ratio of95:5, 90:10, and 85:15 based on their phospholipid and Span 80 content.Results: The most successful formula produced transfersomes of a spherical shape, 78.75 nm in size with a polydispersity index of 0.187, zetapotential of −37.5 mV, and entrapment efficiency of 47.96±5.81%. Subsequently, the transfersome was loaded into a microsphere using the spray-drymethod. The microspheres had a non-spherical, wrinkled shape, their size was 2058.44 nm, their polydispersity index was 0.545, their entrapmentefficiency was 59.27±0.59%, their moisture content was 5.21%, and their swelling index was 289.36% after 4 h. The total cumulative amount ofEpigallocatechin-3-gallate after a dissolution test was 69.15±7.66%.Conclusion: The physicochemical stability of transfersome-loaded microspheres was not significantly different from that of transfersome powder.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Huang ◽  
Huating Dou ◽  
Houjiu Wu ◽  
Zhigao Sun ◽  
Hua Wang ◽  
...  

The objective of this manuscript was to investigate and optimise the potential of nanostructured lipid carriers (NLCs) as a carrier system for nobiletin (NOB), which was prepared by high-pressure homogenisation method. Additionally, this study was focused on the application of NOB-loaded NLC (NOB-NLC) in functional food. Response surface method with a three-level Box–Behnken design was validated through analysis of variance, and the robustness of the design was confirmed through the correspondence between the values measured in the experiments and the predicted ones. Properties of the prepared NOB-NLC, such as Z-average, polydispersity, entrapment efficiency, zeta potential, morphology, and crystallinity, were investigated. NOB-NLC exhibited a spherical shape with a diameter of 112.27 ± 5.33 nm, zeta potential of −35.1 ± 2.94 mV, a polydispersity index of 0.251 ± 0.058, and an EE of 81.06%  ±  6.02%. Results from X-ray diffraction and differential scanning calorimetry of NOB-NLC reviewed that the NOB crystal might be converted to an amorphous state. Fourier transform infrared spectroscopic analysis demonstrated that chemical interaction was absent between the compound and lipid mixture in NOB-NLC.


2011 ◽  
Vol 236-238 ◽  
pp. 1818-1823 ◽  
Author(s):  
Rong Kong ◽  
Qiang Xia ◽  
Guang Yu Liu

Vitamin A Palmitate-loaded Nanostructured Lipid Carriers were prepared by High Pressure Homogenization (HPH) technique. The influences of storage conditions such as time and temperature on the physical and chemical storage stability of VAP-NLCs were studied in details. Preparation and physicochemical properties of VAP lipid nanoparticles were investigated using various analytical equipments such as TEM, photon correlation spectroscopy (PCS), laser diffractometry (LD) and ultraviolet spectrophotometer. The respective optimal HPH pressure and cycles were 70MPa and 5 cycles, so VAP-NLC dispersions under the optimized condition gave rise to the entrapment efficiency (EE) of 99.8%, PI of 0.234, mean diameter of 144±1.7 nm (2% VAP loading capacity). In addition, VAP lipid nanoparticle has a distinct spherical shape, its particle sizes were around 60–330 nm according to VAP contents and zeta potential values -18~-23 mV. Furthermore, the pH of VAP-NLC dispersion was near to 7.0. This study showed that VAP-NLC could hopefully be applied for food products.


2020 ◽  
Vol 8 (3) ◽  
pp. 9-13
Author(s):  
Purnamasari Nur Aini ◽  
Dzakwan Muhammad ◽  
Pramukantoro Ganet Eko ◽  
Mauludin Rachmat ◽  
El Fahmi

Background: Phytosomes are recently introduced drug delivery system and novel botanical formulation to produce lipophilic molecular complex to improve absorption and bioavailability of phytoconstituent. Myricetin is a well-known flavonoid with different biological effects and contributed in food preserving by free radical scavenging activity. However, bioavailability of myricetin is an important limiting factor for its antioxidant activities. Purpose: To overcome this limitation, in the present study we aimed to produce myricetin-loaded nano phytosomes to improve its physicochemical stability and bioavailability. Methods: myricetin-loaded nano phytosome was prepared by using phosphatidylcholine (PC) and cholesterol (CH). Myricetin nanophytosomes system was characterized by particle size analyzer, particle size distribution (PDI), encapsulation efficiency and potential antioxidant activity. Results: Results showed that formulation with the myricetin: PC: CH molar ratio of 1: 2: 0.8 had lower particle size (291.11 nm) and higher encapsulation efficiency percent (93%). Morphology analysis showed that myricetin nanophytosome spherical shape. The potential antioxidant data showed that incorporation myricetin in the phospholipid myricetin remained unchanged even after encapsulation of myricetin in binarynanophytosome formulation. Conclusion: Nano phytosomal formulation of myricetin showed promising potential in fortification of nutraceutical with water insoluble antioxidants.  


Sign in / Sign up

Export Citation Format

Share Document