scholarly journals A truncated form of a transcription factor Mamo activates vasa in Drosophila embryos

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Shoichi Nakamura ◽  
Seiji Hira ◽  
Masato Fujiwara ◽  
Nasa Miyagata ◽  
Takuma Tsuji ◽  
...  

AbstractExpression of the vasa gene is associated with germline establishment. Therefore, identification of vasa activator(s) should provide insights into germline development. However, the genes sufficient for vasa activation remain unknown. Previously, we showed that the BTB/POZ-Zn-finger protein Mamo is necessary for vasa expression in Drosophila. Here, we show that the truncated Mamo lacking the BTB/POZ domain (MamoAF) is a potent vasa activator. Overexpression of MamoAF was sufficient to induce vasa expression in both primordial germ cells and brain. Indeed, Mamo mRNA encoding a truncated Mamo isoform, which is similar to MamoAF, was predominantly expressed in primordial germ cells. The results of our genetic and biochemical studies showed that MamoAF, together with CBP, epigenetically activates vasa expression. Furthermore, MamoAF and the germline transcriptional activator OvoB exhibited synergy in activating vasa transcription. We propose that a Mamo-mediated network of epigenetic and transcriptional regulators activates vasa expression.

2009 ◽  
Vol 30 (6) ◽  
pp. 624-712 ◽  
Author(s):  
Mark A. Edson ◽  
Ankur K. Nagaraja ◽  
Martin M. Matzuk

Abstract Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago.


Development ◽  
1965 ◽  
Vol 13 (1) ◽  
pp. 73-81
Author(s):  
Suzanne L. Ullmann

In many insect eggs, including those of the Diptera, deeply staining granules, rich in RNA, occur in the posterior polar plasm and during ontogeny become enclosed within the pole cells. The structure and fate of these cells, which generally give rise to the primordial germ cells, and their inclusions have excited interest for over half a century (Hegner, 1908; Huettner, 1923; Rabinowitz, 1941; Poulson, 1947; Counce, 1963; Mahowald, 1962), yet numerous questions concerning them remain unsettled or controversial to this day. For instance, the dual fate of the pole cells in Drosophila, the genus which has been most extensively studied, is still debated (Poulson & Waterhouse, 1960; Hathaway & Selman, 1961). Recently, Counce (1963), in a light-microscope study, has described the developmental morphology of the polar granules in several species of Drosophila embryos; while Mahowald (1962) has succeeded in identifying them in D. melanogaster at the ultra-structural level.


2017 ◽  
Author(s):  
Chih-Yung S. Lee ◽  
Tu Lu ◽  
Geraldine Seydoux

AbstractThe Nanos RNA-binding protein has been implicated in the specification of primordial germ cells (PGCs) in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of PGCs lacking the nanos homologues nos-1 and nos-2 iC. elegans. nos-1nos-2 PGCs fail to silence hundreds of genes normally expressed in oocytes and somatic cells, a phenotype reminiscent of PGCs lacking the repressive PRC2 complex. The nos-1nos-2 phenotype depends on LIN-15B, a broadly expressed synMuvB class transcription factor known to antagonize PRC2 activity in somatic cells. LIN-15B is maternally-inherited by all embryonic cells and is down-regulated specifically in PGCs in a nos-1nos-2-dependent manner. Consistent with LIN-15B being a critical target of Nanos regulation, inactivation of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These studies demonstrate a central role for Nanos in reprogramming the transcriptome of PGCs away from an oocyte/somatic fate by down-regulating an antagonist of PRC2 activity.


Author(s):  
Rafał P. Piprek ◽  
Malgorzata Kloc ◽  
Paulina Mizia ◽  
Jacek Z. KUBIAK

Cadherins are a group of membrane proteins responsible for cell adhesion. They are crucial for cell sorting and recognition during the morphogenesis, but also play many other roles such as assuring tissue integrity and resistance to stretching, mechanotransduction, cell signaling, regulation of cell proliferation, apoptosis, survival, carcinogenesis, etc. Within the cadherin superfamily, the E- and N-cadherin have been especially well studied. They are involved in many aspects of sexual development and reproduction, such as germline development and gametogenesis, gonad development and functioning, and fertilization. E-cadherin is expressed in the primordial germ cells, (PGCs) and also participates in PGC migration to the developing gonads where they become enclosed by the N-cadherin-expressing somatic cells. The differential expression of cadherins is also responsible for the establishment of the testis or ovary structure. In the adult testes, the N-cadherin is responsible for the integrity of the seminiferous epithelium, regulation of sperm production, and the establishment of the blood-testis barrier. Sex hormones regulate the expression and turnover of N-cadherin influencing the course of spermatogenesis. In the adult ovaries, E- and N-cadherin assure the integrity of ovarian follicles and the formation of corpora lutea. Cadherins are expressed in the mature gametes, and facilitate the capacitation of sperm in the female reproductive tract, and gamete contact during fertilization. The germ cells and accompanying somatic cells express a series of different cadherins, however, their role in gonads and reproduction is still unknown. In this review, we show what is known and unknown about the role of cadherins in the germline and gonad development, and suggest the topics for future research.


2021 ◽  
Author(s):  
Matus Vojtek ◽  
Jingchao Zhang ◽  
Juanjuan Sun ◽  
Man Zhang ◽  
Ian Chambers

Primordial germ cells (PGCs) are induced in the embryo by signals, including BMP emanating from extra-embryonic ectoderm, that act on cells in the post-implantation epiblast. PGC development can be recapitulated in vitro through the exposure of epiblast-like cells (EpiLCs) to appropriate cytokines, resulting in differentiation into PGC-like cells (PGCLCs). Interestingly, the requirement for cytokines to induce PGCLCs can be bypassed by enforced expression of the transcription factor (TF) NANOG. However, the underlying mechanisms are not fully elucidated. Here, we show that Otx2 downregulation is essential to enable NANOG to induce PGCLC formation. Moreover, while previous work has shown that the direct NANOG target gene Esrrb can substitute for several functions of NANOG, enforced expression of ESRRB cannot promote PGCLC specification from EpiLCs. This appears to be due to differential downregulation of Otx2 by NANOG and ESRRB, since induction of ESRRB in Otx2+/- EpiLCs activates expression of the core PGC TFs, Blimp1, Prdm14 and Ap2γ and emergence of PGCLCs. This study illuminates the interplay of TFs occurring at the earliest stages of PGC specification from a state of competence.


Reproduction ◽  
2020 ◽  
Author(s):  
Delia Alba Soto ◽  
Pablo Juan Ross

The germ cell lineage ensures the creation of new individuals and perpetuates the genetic information across generations. Primordial germ cells are pioneers of gametes and exist transiently during development until they differentiate into oogonia in females, or spermatogonia in males. Little is known about the molecular characteristics of primordial germ cells in cattle. By performing single-cell RNA-sequencing, quantitative real-time PCR, and immunofluorescence analyses of fetal gonads between 40 and 90 days of fetal age, we evaluated the molecular signatures of bovine germ cells at the initial stages of gonadal development. Our results indicate that at 50 days of fetal age, bovine primordial germ cells were in the early stages of development, expressing genes of early primordial germ cells, including transcriptional regulators of human germline specification (e.g. SOX17, TFAP2C, and PRDM1). Bovine and human primordial germ cells also share expression of KIT, EPCAM, ITGA6, and PDPN genes coding for membrane-bound proteins, and an asynchronous pattern of differentiation. Additionally, the expression of members of Notch, Nodal/Activin, and BMP signaling cascades in the bovine fetal ovary, suggests that these pathways are involved in the interaction between germ cells and their niche. Results of this study provide insights into the mechanisms involved in the development of bovine primordial germ cells and put in evidence similarities between the bovine and human germline.


2020 ◽  
Vol 21 (21) ◽  
pp. 8264
Author(s):  
Rafał P. Piprek ◽  
Malgorzata Kloc ◽  
Paulina Mizia ◽  
Jacek Z. Kubiak

Cadherins are a group of membrane proteins responsible for cell adhesion. They are crucial for cell sorting and recognition during the morphogenesis, but they also play many other roles such as assuring tissue integrity and resistance to stretching, mechanotransduction, cell signaling, regulation of cell proliferation, apoptosis, survival, carcinogenesis, etc. Within the cadherin superfamily, E- and N-cadherin have been especially well studied. They are involved in many aspects of sexual development and reproduction, such as germline development and gametogenesis, gonad development and functioning, and fertilization. E-cadherin is expressed in the primordial germ cells (PGCs) and also participates in PGC migration to the developing gonads where they become enclosed by the N-cadherin-expressing somatic cells. The differential expression of cadherins is also responsible for the establishment of the testis or ovary structure. In the adult testes, N-cadherin is responsible for the integrity of the seminiferous epithelium, regulation of sperm production, and the establishment of the blood–testis barrier. Sex hormones regulate the expression and turnover of N-cadherin influencing the course of spermatogenesis. In the adult ovaries, E- and N-cadherin assure the integrity of ovarian follicles and the formation of corpora lutea. Cadherins are expressed in the mature gametes and facilitate the capacitation of sperm in the female reproductive tract and gamete contact during fertilization. The germ cells and accompanying somatic cells express a series of different cadherins; however, their role in gonads and reproduction is still unknown. In this review, we show what is known and unknown about the role of cadherins in the germline and gonad development, and we suggest topics for future research.


2020 ◽  
Author(s):  
Yin Ho Vong ◽  
Lavanya Sivashanmugam ◽  
Andreas Zaucker ◽  
Alex Jones ◽  
Karuna Sampath

AbstractThe ability to reproduce is essential in all branches of life. In metazoans, this process is initiated by formation of the germline, a group of cells that are destined to form the future gonads, the tissue that will produce the gametes. The molecular mechanisms underlying germline formation differs between species. In zebrafish, development of the germline is dependent on the specification, migration and proliferation of progenitors called the primordial germ cells (PGCs). PGC specification is dependent on a maternally provided cytoplasmic complex of ribonucleoproteins (RNPs), the germplasm. Here, we show that the conserved RNA-binding protein (RBP), Igf2bp3, has an essential role during early embryonic development and germline development. Loss of Igf2bp3 leads to an expanded yolk syncytial layer (YSL) in early embryos, reduced germline RNA expression, and mis-regulated germline development. Maternal mutants affecting igf2bp3 exhibit abnormal PGCs and adult igf2bp3 mutants show male biased sex ratios. Therefore, Igf2bp3 is required for normal embryonic and germline development.


Sign in / Sign up

Export Citation Format

Share Document