scholarly journals The E3 ubiquitin ligase HectD3 attenuates cardiac hypertrophy and inflammation in mice

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ashraf Yusuf Rangrez ◽  
Ankush Borlepawar ◽  
Nesrin Schmiedel ◽  
Anushka Deshpande ◽  
Anca Remes ◽  
...  

Abstract Myocardial inflammation has recently been recognized as a distinct feature of cardiac hypertrophy and heart failure. HectD3, a HECT domain containing E3 ubiquitin ligase has previously been investigated in the host defense against infections as well as neuroinflammation; its cardiac function however is still unknown. Here we show that HectD3 simultaneously attenuates Calcineurin-NFAT driven cardiomyocyte hypertrophy and the pro-inflammatory actions of LPS/interferon-γ via its cardiac substrates SUMO2 and Stat1, respectively. AAV9-mediated overexpression of HectD3 in mice in vivo not only reduced cardiac SUMO2/Stat1 levels and pathological hypertrophy but also largely abolished macrophage infiltration and fibrosis induced by pressure overload. Taken together, we describe a novel cardioprotective mechanism involving the ubiquitin ligase HectD3, which links anti-hypertrophic and anti-inflammatory effects via dual regulation of SUMO2 and Stat1. In a broader perspective, these findings support the notion that cardiomyocyte growth and inflammation are more intertwined than previously anticipated.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hai-han Liao ◽  
Nan Zhang ◽  
Yan-yan Meng ◽  
Hong Feng ◽  
Jing-jing Yang ◽  
...  

Myricetin (Myr) is a common plant-derived polyphenol and is well recognized for its multiple activities including antioxidant, anti-inflammation, anticancer, and antidiabetes. Our previous studies indicated that Myr protected mouse heart from lipopolysaccharide and streptozocin-induced injuries. However, it remained to be unclear whether Myr could prevent mouse heart from pressure overload-induced pathological hypertrophy. Wild type (WT) and cardiac Nrf2 knockdown (Nrf2-KD) mice were subjected to aortic banding (AB) surgery and then administered with Myr (200 mg/kg/d) for 6 weeks. Myr significantly alleviated AB-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction in both WT and Nrf2-KD mice. Myr also inhibited phenylephrine- (PE-) induced neonatal rat cardiomyocyte (NRCM) hypertrophy and hypertrophic markers’ expression in vitro. Mechanically, Myr markedly increased Nrf2 activity, decreased NF-κB activity, and inhibited TAK1/p38/JNK1/2 MAPK signaling in WT mouse hearts. We further demonstrated that Myr could inhibit TAK1/p38/JNK1/2 signaling via inhibiting Traf6 ubiquitination and its interaction with TAK1 after Nrf2 knockdown in NRCM. These results strongly suggested that Myr could attenuate pressure overload-induced pathological hypertrophy in vivo and PE-induced NRCM hypertrophy via enhancing Nrf2 activity and inhibiting TAK1/P38/JNK1/2 phosphorylation by regulating Traf6 ubiquitination. Thus, Myr might be a potential strategy for therapy or adjuvant therapy for malignant cardiac hypertrophy.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Yunzeng Zou ◽  
Hui Gong ◽  
Li Lin ◽  
Ning Zhou ◽  
Lei Li ◽  
...  

Qiliqiangxin (QL), a traditional Chinese medicine, has been used in the treatment of chronic heart failure. However, whether QL can prevent cardiac hypertrophy and remodeling in the hypertensive is unknown. We here compared the effects of QL with Losartan on the development of cardiac hypertrophy in a mice model of pressure overload. Constriction of transverse aorta (TAC) or sham operation was imposed to C57B/L6 mice and QL (0.6mg/Kg/day), Losartan (13.4mg/Kg/day) or vehicle was then administrated to them. Cardiac hypertrophy, remodeling, functions and fibrosis were evaluated by echocardiography, catheterization, histology, and examination of specific gene expression and ERK phosphorylation. Local apoptosis, autophagy, TNF-α/IGF-1, angiotensin II type 1 receptor (AT1-R), and especially the proliferation of cardiomyocytes and phosphorylation of ErbB2 and ErbB4 were examined in vivo to elucidate the mechanisms. Two weeks later, TAC resulted in a significant cardiac hypertrophy in vehicle group, which was significantly suppressed in either QL or Losartan group. At the end of 4 weeks, QL treatment effectively abrogated TAC-induced the development of myocardial remodeling, dysfunction, fibrosis, and the increases in apoptosis, autophagy, TNF-α to IGF-1 ratio and AT1-R expression, which were comparable to Losartan treatment. However, QL, but not Losartan, enhanced proliferation of cardiomyocytes at 4 weeks after TAC, which was paralleled with dowregulation of C/EBP β , upregulation of CITED4 , and increases in ErbB2 and ErbB4 phosphorylation. Thus, QL inhibits myocardial inflammation and cardiomyocyte death, and promotes cardiomyocyte proliferation, leading to an ameliorated cardiac remodeling and function in a mice model of pressure overload. The possible mechanisms may involve inhibition of AT1-R and activation of ErbB receptors.


2010 ◽  
Vol 41 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Shawn D. Hingtgen ◽  
Zhenbo Li ◽  
William Kutschke ◽  
Xin Tian ◽  
Ram V. Sharma ◽  
...  

Recent studies from our laboratory and others have shown that increases in cytoplasmic superoxide (O2·−) levels and Akt activation play a key role in agonist-stimulated NF-κB activation and cardiomyocyte hypertrophy in vitro. In this study, we tested the hypothesis that adenovirus (Ad)-mediated intramyocardial gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD) or a dominant-negative form of Akt (AdDNAkt) in mice would attenuate pressure overload-induced increases in activation of the redox-sensitive transcription factor NF-κB and cardiac hypertrophy. Adult C57BL/6 mice were subjected to thoracic aortic banding (TAB) or sham surgery, and intramyocardial injections of viral vectors (AdCu/ZnSOD, AdDNAkt, or control) were performed. There was robust transgene expression in the heart, which peaked 6–7 days after injection and then declined to undetectable levels by 12–14 days. In mice injected with AdBgL II, TAB caused a significant increase in O2·− generation and cardiac mass at 1 wk, and these responses were markedly attenuated by AdCu/ZnSOD. In addition, TAB induced time-dependent activation of NF-κB in the myocardium as measured longitudinally by in vivo bioluminescent imaging of NF-κB-dependent luciferase expression. This was also abolished by intracardiac AdCu/ZnSOD or AdDNAkt, but not the control vector. The inhibition of Akt and O2·−-mediated NF-κB activation in TAB hearts was associated with an attenuation of cardiac hypertrophy. Since a direct cause-and-effect relationship between NF-κB activation and cardiomyocyte hypertrophy has been established previously, our data support the hypothesis that increased O2·− generation and Akt activation are key signaling intermediates in pressure overload-induced activation of NF-κB and cardiac hypertrophy.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Shi Peng ◽  
Xiao-feng Lu ◽  
Yi-ding Qi ◽  
Jing Li ◽  
Juan Xu ◽  
...  

Aims. We aimed to investigate whether LCZ696 protects against pathological cardiac hypertrophy by regulating the Sirt3/MnSOD pathway. Methods. In vivo, we established a transverse aortic constriction animal model to establish pressure overload-induced heart failure. Subsequently, the mice were given LCZ696 by oral gavage for 4 weeks. After that, the mice underwent transthoracic echocardiography before they were sacrificed. In vitro, we introduced phenylephrine to prime neonatal rat cardiomyocytes and small-interfering RNA to knock down Sirt3 expression. Results. Pathological hypertrophic stimuli caused cardiac hypertrophy and fibrosis and reduced the expression levels of Sirt3 and MnSOD. LCZ696 alleviated the accumulation of oxidative reactive oxygen species (ROS) and cardiomyocyte apoptosis. Furthermore, Sirt3 deficiency abolished the protective effect of LCZ696 on cardiomyocyte hypertrophy, indicating that LCZ696 induced the upregulation of MnSOD and phosphorylation of AMPK through a Sirt3-dependent pathway. Conclusions. LCZ696 may mitigate myocardium oxidative stress and apoptosis in pressure overload-induced heart failure by regulating the Sirt3/MnSOD pathway.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Yi Zhang ◽  
Yan Huang ◽  
Anna Cantalupo ◽  
Paula S Azevedo ◽  
Mauro Siragusa ◽  
...  

Chronic pressure overload leads to an initial compensatory cardiac hypertrophy, and eventually to heart failure. The mechanisms regulating the transition from adaptive to pathological cardiac hypertrophy remain elusive. We recently discovered that endothelial Nogo-B, a membrane protein of the ER, regulates vascular functions by inhibiting the rate-limiting enzyme in de novo sphingolipid biosynthesis, serine palmitoyltransferase (SPT). Here, we show that sphingolipids produced by the vasculature, particularly S1P, protect the heart function during pressure overload, through a paracrine mode of action. SPT activity is upregulated in banded hearts in vivo , as well as in TNF-α-activated endothelium in vitro , and loss of Nogo-mediated brake on SPT increases the production of S1P, which enhances the coronary vasculature compliance to high pressure and endothelial barrier. Hence, mice lacking Nogo-B, systemically or specifically in the endothelium, are resistant to the onset of pathological hypertrophy. Furthermore, pharmacological inhibition of SPT with myriocin restores permeability, inflammation, and heart dysfunction in Nogo-A/B-deficient mice to wild-type levels; whereas SEW2871, an S1P 1 receptor agonist, prevents myocardial inflammation and dysfunction in WT banded mice. Our study identifies a critical role of endothelial sphingolipid biosynthesis and its regulation by Nogo-B in the development of pathological cardiac hypertrophy, and proposes a potential new therapeutic target for the attenuation or reversal of this clinical condition.


2017 ◽  
Author(s):  
Jiani C. Yin ◽  
Mathew J. Platt ◽  
Xixi Tian ◽  
Xue Wu ◽  
Peter H. Backx ◽  
...  

AbstractNoonan syndrome (NS) is caused by mutations in RAS/ERK pathway genes, and is characterized by craniofacial, growth, cognitive and cardiac defects. NS patients with kinase-activating RAF1 alleles typically develop pathological left ventricular hypertrophy (LVH), which is reproduced in Raf1L613V/+ knock-in mice. Here, using inducible Raf1L613V expression, we show that LVH results from the interplay of cardiac cell types. Cardiomyocyte Raf1L613V enhances Ca2+ sensitivity and cardiac contractility without causing hypertrophy. Raf1L613V expression in cardiomyocytes or activated fibroblasts exacerbates pressure overload-evoked fibrosis. Endothelial/endocardial (EC) Raf1L613V causes cardiac hypertrophy without affecting contractility. Co-culture and neutralizing antibody experiments reveal a cytokine (TNF/IL6) hierarchy in Raf1L613V-expressing ECs that drives cardiomyocyte hypertrophy in vitro. Furthermore, post-natal TNF inhibition normalizes the increased wall thickness and cardiomyocyte hypertrophy in vivo. We conclude that NS cardiomyopathy involves cardiomyocytes, ECs, and fibroblasts, TNF/IL6 signaling components represent potential therapeutic targets, and abnormal EC signaling might contribute to other forms of LVH.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Zhao-Peng Wang ◽  
Difei Shen ◽  
Yan Che ◽  
Ya-Ge Jin ◽  
Sha-Sha Wang ◽  
...  

Abstract Aim: In this work, we explored the role of corosolic acid (CRA) during pressure overload-induced cardiac hypertrophy. Methods and results: Cardiac hypertrophy was induced in mice by aortic banding. Four weeks post-surgery, CRA-treated mice developed blunted cardiac hypertrophy, fibrosis, and dysfunction, and showed increased LC3 II and p-AMPK expression. In line with the in vivo studies, CRA also inhibited the hypertrophic response induced by PE stimulation accompanying with increased LC3 II and p-AMPK expression. It was also found that CRA blunted cardiomyocyte hypertrophy and promoted autophagy in Angiotensin II (Ang II)-treated H9c2 cells. Moreover, to further verify whether CRA inhibits cardiac hypertrophy by the activation of autophagy, blockade of autophagy was achieved by CQ (an inhibitor of the fusion between autophagosomes and lysosomes) or 3-MA (an inhibitor of autophagosome formation). It was found that autophagy inhibition counteracts the protective effect of CRA on cardiac hypertrophy. Interestingly, AMPK knockdown with AMPKα2 siRNA-counteracted LC3 II expression increase and the hypertrophic response inhibition caused by CRA in PE-treated H9c2 cells. Conclusion: These results suggest that CRA may protect against cardiac hypertrophy through regulating AMPK-dependent autophagy.


2021 ◽  
Vol 22 (11) ◽  
pp. 5712
Author(s):  
Michał Tracz ◽  
Ireneusz Górniak ◽  
Andrzej Szczepaniak ◽  
Wojciech Białek

The SPL2 protein is an E3 ubiquitin ligase of unknown function. It is one of only three types of E3 ligases found in the outer membrane of plant chloroplasts. In this study, we show that the cytosolic fragment of SPL2 binds lanthanide ions, as evidenced by fluorescence measurements and circular dichroism spectroscopy. We also report that SPL2 undergoes conformational changes upon binding of both Ca2+ and La3+, as evidenced by its partial unfolding. However, these structural rearrangements do not interfere with SPL2 enzymatic activity, as the protein retains its ability to auto-ubiquitinate in vitro. The possible applications of lanthanide-based probes to identify protein interactions in vivo are also discussed. Taken together, the results of this study reveal that the SPL2 protein contains a lanthanide-binding site, showing for the first time that at least some E3 ubiquitin ligases are also capable of binding lanthanide ions.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhou Yu ◽  
Xuelian Li ◽  
Mingjin Yang ◽  
Jiaying Huang ◽  
Qian Fang ◽  
...  

AbstractSensing of pathogenic nucleic acids by pattern recognition receptors (PRR) not only initiates anti-microbe defense but causes inflammatory and autoimmune diseases. E3 ubiquitin ligase(s) critical in innate response need to be further identified. Here we report that the tripartite motif-containing E3 ubiquitin ligase TRIM41 is required to innate antiviral response through facilitating pathogenic nucleic acids-triggered signaling pathway. TRIM41 deficiency impairs the production of inflammatory cytokines and type I interferons in macrophages after transfection with nucleic acid-mimics and infection with both DNA and RNA viruses. In vivo, TRIM41 deficiency leads to impaired innate response against viruses. Mechanistically, TRIM41 directly interacts with BCL10 (B cell lymphoma 10), a core component of CARD proteins−BCL10 − MALT1 (CBM) complex, and modifies the Lys63-linked polyubiquitylation of BCL10, which, in turn, hubs NEMO for activation of NF-κB and TANK-binding kinase 1 (TBK1) − interferon regulatory factor 3 (IRF3) pathways. Our study suggests that TRIM41 is the potential universal E3 ubiquitin ligase responsible for Lys63 linkage of BCL10 during innate antiviral response, adding new insight into the molecular mechanism for the control of innate antiviral response.


2016 ◽  
Vol 113 (35) ◽  
pp. E5192-E5201 ◽  
Author(s):  
Yue Ma-Lauer ◽  
Javier Carbajo-Lozoya ◽  
Marco Y. Hein ◽  
Marcel A. Müller ◽  
Wen Deng ◽  
...  

Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PLpro), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95–144 of RCHY1 and 389–652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PLpros from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD–PLprofusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PLproalone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.


Sign in / Sign up

Export Citation Format

Share Document